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REVERSED SMOOTHED QUANTILE REGRESSION FOR
DISTRIBUTED HIGH-DIMENSIONAL DATA

CycleResearcher

ABSTRACT

High-dimensional distributed quantile regression (QR) is studied in this paper. To
overcome the non-smooth issue of the check loss function, a popular approach is
to smooth it. However, the smoothed QR estimator and its inferential procedures
require a large minimum local sample size. To address the problem, we propose a
new estimator by combining the reversed smoothed check loss and ℓ1-penalization.
Theoretically, in terms of estimation, we establish the minimax optimal convergence
rate for the global estimator and the valid confidence interval for an individual
coefficient. In terms of computation and communication, we show that the proposed
iterative algorithm converges linearly for a fixed number of machines and requires
only a logarithmic number of communication rounds. Additionally, our theoretical
results hold under a weaker condition on the minimum local sample size. Numerical
experiments corroborate our theoretical claims.

1 INTRODUCTION

Large-scale data are nowadays commonly encountered in various domains, including finance, biology,
social science, and astronomy. Quantile regression (QR), which was first introduced by Koenker
& Bassett Jr (1978), is a useful tool for analyzing large-scale data. Compared to the classical
linear regression, QR is more robust to outliers and heavy-tailed errors and can conduct statistical
inference at different quantile levels. When facing an ultra-large dataset, one can distribute it to
several machines for parallel computing. Such a distributed system raises many challenges for the
QR estimator and the corresponding inferential procedure.

Firstly, the check loss function used in QR is non-smooth, which makes the estimation and inference
more difficult. To tackle the problem, a popular approach is to smooth the check loss by kernel
smoothing or other methods. For example, Fernandes et al. (2021) used the integral of the logistic
function to smooth the check loss. He et al. (2023) adopted the smooth check loss that was proposed
by Belloni & Chernozhukov (2011), where an additional quadratic term was added to the check
loss. Although these smoothed QR estimators share the same convergence rate with the classical
QR estimator, they enjoy better Bahadur representation and mean squared error. Besides, Tan et al.
(2022) considered the distributed setting and proposed a double-smoothed approach, where the global
and local loss functions were both smoothed.

Secondly, when data are stored in a distributed system, designing a computationally efficient algorithm
and a communication-efficient scheme between machines is crucial. Divide-and-conquer is a simple
and widely used method for distributed inference, where the central machine randomly divides data
into several subsets, local machines fit the model for their subsets, and the central machine aggregates
these estimators by taking their average. This method was firstly proposed by Zhang et al. (2013) for
estimating the sufficient dimension reduction subspace. Afterwards, it was adapted to kernel ridge
regression (Zhang et al., 2015), matrix completion (Zhang et al., 2013), and linear regression (Li et al.,
2013). Although the divide-and-conquer method is communication-efficient, the aggregated estimator
is generally not as good as the one trained with all data. To improve the performance, Shamir et al.
(2014) proposed the distributed Newton-CG algorithm, where the central machine sends the current
global estimator to local machines, local machines refine it by Newton-CG algorithm, and the central
machine then updates the global estimator by averaging the returned values. This procedure is
repeated for several rounds. The distributed Newton-CG algorithm was later studied by Wang et al.
(2017) for ℓ1-regularized M-estimation and by Fan et al. (2021) for general M-estimation. Besides,
Jordan et al. (2019) developed the communication-efficient stochastic approximation algorithm,
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where the central machine updated the global estimator by using the weighted sum of local estimators.
Chen et al. (2020) developed a communication-efficient algorithm based on gradient descent for
heavy-tailed response. Recently, Bao & Xiong (2021) considered the one-round communication
scheme, where the central machine sent the training data to local machines, local machines conducted
M-estimation with ℓ1-penalization, and the central machine updated the global estimator by averaging
the returned values.

In this paper, we study the high-dimensional distributed QR with smoothed check loss. Our contribu-
tions are summarized as follows.

• We propose a new estimator by combining the reversed smoothed check loss and ℓ1-
penalization. Compared with the smoothed QR estimator (Tan et al., 2022), the proposed
estimator requires a weaker condition on the minimum local sample size and fewer commu-
nication rounds.

• We establish the minimax optimal estimation rate for the global estimator and provide a
valid confidence interval for an individual coefficient. Our inferential result is new in the
literature of high-dimensional distributed QR.

• Computationally, we show that the proposed iterative algorithm converges linearly for a
fixed number of machines and requires only a logarithmic number of communication rounds.

The rest of this paper is organized as follows. Section 2 describes the reversed smoothed quantile
regression (RSQR) estimator. Section 3 presents the theoretical results. Section 4 reports the
numerical results. All proofs are collected in the supplementary material.

Notation: For two sequences {an} and {bn}, an ≲ bn or an = O(bn) means that an ≤ Cbn for
some absolute constant C, an ≍ bn means that an = O(bn) and bn = O(an), and an ≪ bn or
an = o(bn) means that an/bn → 0. For a vector = (a1, . . . , ad)

⊤ ∈ Rd, ∥∥0 =
∑d

j=1(aj ̸= 0), ∥
∥1 =

∑d
j=1 |aj | and ∥∥∞ = max1≤j≤d |aj |. For two sets A and B, A ⊆ B means that A is a subset

of B, A∩B is the intersection of A and B, and A∪B is the union of A and B. For a matrix , we use
, to denote the submatrix with row indices in and column indices in . For two symmetric matrices
and , ⪰ means that − is positive semi-definite.

2 METHODOLOGY

Consider the high-dimensional linear regression model

=0 +ε · 1n, where ∈ Rn, ∈ Rn×d, 0 ∈ Rd (1)

and ε = (v1, . . . , vn)
⊤ with independent and identically distributed (i.i.d.) entries. We assume that

n is large and d is comparable with n. Let Q(τ) be the τ -th conditional quantile of given , i.e.,
P (Q(τ) ≤≤ Q(τ) + v | ) = τ . Throughout this paper, we focus on the standard check loss

ℓτ (u) = u{τ − (u < 0)} (2)

and its smoothed version

ℓsτ (u) =
1

γ

∫ u

0

{τ − Φ(v/γ)}dv, (3)

where γ > 0 is the smoothing parameter and Φ(·) is the cumulative distribution function (CDF) of
the standard normal distribution. Note that

ℓsτ (u) = wγ(τ − u) · u+ (τ − 1/2)u2 (4)

with
wγ(x) =

1

γ
{τ − Φ(τ − x/γ)} − 1

γ
ϕ(τ − x/γ) · x/γ, (5)

where ϕ(·) is the probability density function (PDF) of the standard normal distribution. We call
ℓsτ (u) in (3) or (4) the smoothed check loss (Belloni & Chernozhukov, 2011). Additionally, we define
the reversed check loss and the reversed smoothed check loss as

ℓrτ (u) = ℓs1−τ (−u) = wγ(u− τ) · u+ (1/2− τ)u2 (6)
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with
wγ(x) =

1

γ
{(1− τ)− Φ((1− τ)− x/γ)}+ 1

γ
ϕ((1− τ)− x/γ) · x/γ. (7)

Suppose that data are stored in a distributed system with K machines. The k-th machine owns the
data (k,k ) with k ∈ Rnk and k ∈ Rnk×d. Let n1 ≥ n2 ≥ . . . ≥ nK without loss of generality. In
this paper, we consider the case where nK ≫ log d. We adopt the ℓ1-penalized quantile regression
approach. Specifically, local machines minimize

Qk() =
1

nk

nk∑
i=1

ℓrτ (yki−⊤
ki) + λ∥∥1, ∀k ∈ [K], (8)

where ∥∥1 is the ℓ1-penalty, λ > 0 is the regularization parameter and [K] = {1, . . . ,K}. Denote
the local estimator on the k-th machine bŷrk. The central machine averages the local estimators and
obtains the global estimator

˜= 1

K

K∑
k=1̂

r
k. (9)

The central machine then sends˜to local machines for computing

Qrefine
k () =

1

nk

nk∑
i=1

ℓrτ (yki−⊤
ki) + λ∥∥1 +

1

2
(−̃)⊤k (−̃), ∀k ∈ [K], (10)

where k is a d× d weighting matrix. Denote the local refined estimator on the k-th machine bŷrk,1.
The central machine updates the global estimator by

1̃ =
1

K

K∑
k=1̂

r
k,1. (11)

This procedure can be iterated for T rounds. The final global estimator is denoted by T̃ . We call the
estimator T̃ the reversed smoothed quantile regression (RSQR) estimator.

Compared with the distributed smoothed quantile regression (DSQR) estimator (Tan et al., 2022), the
RSQR estimator has two main differences. Firstly, the RSQR estimator adopts the reversed smoothed
check loss (6), while the DSQR estimator uses the smoothed check loss (3). The motivation for using
the reversed version is that ℓrτ (u) has a larger curvature when u is around zero. Recall that

ℓrτ (u) =
1

γ

∫ u

0

{(1− τ)− Φ((1− τ)− v/γ)}dv. (12)

It is easy to show that the first and second derivatives of ℓrτ (u) are

ℓ′τ,r(u) =
1

γ
{(1− τ)− Φ((1− τ)− u/γ)}, (13)

ℓ′′τ,r(u) =
1

γ2
ϕ((1− τ)− u/γ). (14)

Let Z ∼ (0, 1). By the symmetry of (0, 1) distribution about the origin and the fact that u/γ → 0 as
u → 0, we have

E[ℓ′′τ,r(u)] = E[ℓ′′τ,r(u/γ · Z)] → Φ(1− τ) > 1/2 ≥ E[ℓ′′τ,s(u)], (15)

where ℓ′′τ,s(u) = ϕ(τ − u/γ)/γ2. This implies that the curvature of ℓrτ (u) is larger than that of
ℓsτ (u) as u → 0. Secondly, the RSQR estimator uses the refined loss function (10), while the DSQR
estimator employs the gradient descent method. Although the gradient descent method is more
standard, our refined loss function can make the central estimator converge faster and enjoy a better
rate. The detailed theoretical results will be presented in Section 3.

3 THEORETICAL RESULTS

In this section, we first introduce the definitions and assumptions and then present the theoretical
results.
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3.1 DEFINITIONS AND ASSUMPTIONS

We adopt the classical sparsity assumption in high-dimensional statistics (Wainwright, 2009; Fan &
Li, 2001).

Assumption 3.1. The true parameter 0 is s0-sparse, i.e., ∥0∥0 = s0.

Denote the active set by = {j : β0
j ̸= 0} and the inactive set by c = {j : β0

j = 0}. Let = E[1⊤1 ] and
=,. The quantity θ() is defined as

θ() = min
∈Rs0 :∥∥1=1

∥∥∞. (16)

The quantity θ() was firstly proposed by Zhao & Yu (2006) and is often called the irrepresentable
condition (Wainwright, 2009).

For the loss function ℓrτ (u), we define the corresponding population version of the Hessian matrix as

= E[ℓ′′τ,r(ε) ·1 ⊤
1 ]. (17)

We also need the following standard assumptions, which can be found in Neykov et al. (2016); ?);
Lee et al. (2017).

Assumption 3.2. We assume that

(i) θ() > 0.

(ii) There exist absolute constants cl and cu such that cl ≤ λmin() ≤ λmax() ≤ cu.

(iii) There exists an absolute constant cg such that g(β) ≤ cg for any β ∈ [−3cu, 3cu], where
g(β) =

∫∞
−∞[1− Φ((1− τ)− x/γ)]ϕ(β − x/γ)dx.

Here (i) is the irrepresentable condition in high-dimensional statistics (Wainwright, 2009; Zhao
& Yu, 2006), which is widely used for analyzing the ℓ1-penalized regression (Hastie et al., 2015;
Zhang, 2010; Fan & Li, 2001). (ii) is the eigenvalue assumption on the Hessian matrix and (iii) is the
boundedness assumption on a relevant density function. They are standard for quantile regression
(Fan et al., 2014; Chen et al., 2019; Bradic & Kolar, 2017).

Next we introduce the minimal signal condition, which was firstly proposed by Fan & Li (2001).

Assumption 3.3. There exists a constant cm > 0 such that minj∈ |β0
j | ≥ cm.

The minimal signal condition guarantees that the signal is sufficiently strong compared with the noise.
Otherwise the signal would be buried by the noise. Assumption 3.3 is very common in the literature
of high-dimensional statistics (Hastie et al., 2015; Zhang, 2010; Fan & Li, 2001).

Recall that the reversed check loss function is defined by

ℓrτ (u) = wγ(u− τ) · u+ (1/2− τ)u2, (18)

where

wγ(x) =
1

γ
{(1− τ)− Φ((1− τ)− x/γ)}+ 1

γ
ϕ((1− τ)− x/γ) · x/γ. (19)

Let ẇγ(x) = E[wγ(x · Z)] with Z ∼ (0, 1). By (7), we have

ẇγ(x) =
1

γ
{(1− τ)− Φ((1− τ)− x/γ)}+ 1

γ2
ϕ((1− τ)− x/γ) · x2/γ. (20)

It is easy to show that ẇγ(x) is monotonically increasing and that ẇγ(0) = (1− τ)/γ. Thus there
exists a constant x0 = x0(τ, γ) such that ẇγ(x0) = 1/2. For example, x0 ≈ 0.4035 for τ = 0.5 and
γ = 1. Throughout this paper, we assume that

nK ≫ log d and nK ≥ 16x2
0c

2
uθ

−2(). (21)
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Table 1: Comparison of the estimation rates for related estimators. The symbol “-” means that the
corresponding result is not available.

minimum local sample size sparsity level estimation rate
DSQR nK ≫ log d s0 ≪ n ≲

√
log d/n

BAC-QR nk ≳ s0 log d s0 ≪ n ≲
√
log d/n

DQR nK ≫ log d s0 ≪
√
n/K ≲ 1/

√
n

DCQR nK ≫ log d s0 ≪
√
n/K ≲ 1/

√
n

RSQR nK ≥ 16x2
0c

2
uθ

−2() s0 ≪ n ≲
√
log d/n

3.2 ESTIMATION

In this subsection, we consider the estimation of 0. The convergence rate of the RSQR estimator T̃ is
described in the following theorem.

Suppose that Assumptions 3.1–3.3 hold, nK ≫ log d and nK ≥ 16x2
0c

2
uθ

−2(). If λ ≍
√
log d/n,

then for any T ≥ 1, the RSQR estimator T̃ with weighting matrix k = satisfies

E
[∥∥∥∥̃ T−0

√
λn

∥∥∥∥
∞

]
≲

√
log d

n
, (22)

where λn = λ/[cu
√
n/(K log d)].

Theorem 3.2 shows that the RSQR estimator T̃ achieves the minimax optimal convergence rate in
estimation (Zhang, 2010; ?; ?). Although the distributed setting considered in this paper is different
from the classical quantile regression, the convergence rate remains unchanged. Additionally, the
RSQR estimator can be computed by the proximal gradient descent algorithm (Wright, 2015; Solntsev
et al., 2015).

We compare the estimation rates of several related estimators, which are the DSQR estimator (Tan
et al., 2022), the BAC-QR estimator (Xu et al., 2020), the debiased QR (DQR) estimator (Chen et al.,
2019), and the divide-and-conquer QR (DCQR) estimator (Chen & Zhou, 2020). Note that the DQR
and DCQR estimators do not adopt the ℓ1-penalty, and hence their convergence rates are not in terms
of the ℓ1-norm. The estimation rates of these estimators are summarized in Table 1 and we have the
following comments.

(i) The DSQR and RSQR estimators achieve the same estimation rate. Although the DSQR
estimator is proposed for the non-smooth check loss, our result is established for the
smoothed check loss (12). The smooth check loss (3) and the reversed smooth check loss
(12) are essentially the same up to a transform τ → 1− τ . Hence the estimation rates for
them are the same.

(ii) The BAC-QR estimator requires the condition nk ≳ s0 log d on the minimum local sample
size, which is much larger than our condition nk ≥ 16x2

0c
2
uθ

−2(). This is because BAC-QR
applies a block coordinate descent algorithm to the non-smooth check loss, while we smooth
the check loss and adopt a different iterative algorithm.

(iii) The divide-and-conquer estimators, i.e., DQR and DCQR, do not apply the ℓ1-penalty.
Hence their estimation rates are not in terms of the ℓ1-norm. For the DCQR estimator,
we convert the ℓ2-norm rate to the ℓ1-norm rate by using the irrepresentable condition.
Compared with the DCQR estimator, the advantage of the RSQR estimator is that it does
not require the condition s0 ≪

√
n/K on the sparsity level.

Next we study the support recovery property of the RSQR estimator.

Suppose that Assumptions 3.1–3.3 hold, nK ≫ log d and nK ≥ 16x2
0c

2
uθ

−2(). If λ ≍
√
log d/n

and T ≥ 1, then the RSQR estimator T̃ with weighting matrix k = satisfies

P (c⊆ )̂ ≥ 1− c0(s0/n)
q (23)

and
P (c= )̂ ≥ 1− c0(s0/n)

q − 2c1 exp(−c2nKλ2), (24)
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wherê= {j : β̃T,j ̸= 0}, c0, c1 and c2 are absolute constants, q is defined by minj∈ |β0
j | ≥ cm ≥

4λn · q and λn = λ/[cu
√
n/(K log d)].

Theorem 3.2 shows that the RSQR estimator enjoys the support recovery property, i.e.,̂ is a consistent
estimator of c. The support recovery property is very important for high-dimensional data analysis
(Hastie et al., 2015; Zhang, 2010; Fan & Li, 2001).

3.3 INFERENCE

In this subsection, we study the inferential procedure for an individual coefficient. We first introduce
the technical assumptions that are necessary for statistical inference.

Assumption 3.4. There exist absolute constants cl,1 and cu,1 such that cl,1 ≤ λmin(j,j) ≤ λmax() ≤
cu,1 for any j ∈c.

Assumption 3.5. There exists an absolute constant cg,1 such that gj(β) ≤ cg,1 for any β ∈
[−3cu,1, 3cu,1] and any j ∈c, where gj(β) =

∫∞
−∞[1− Φ((1− τ)− x/γ)]ϕ(β − x/γ)dx.

Assumption 3.4 is the eigenvalue assumption and Assumption 3.5 is the boundedness assumption on
the univariate density function. They are both standard for statistical inference in high-dimensional
linear models (Lee et al., 2017; Fan et al., 2021).

For the true parameter 0, we define the corresponding one-sparsity estimator˜1 by

β̃1
j =

1

K

K∑
k=1

β̂1
j,k for β̂1

j,k = argmin
β∈R

Qk(β·j) (25)

with Qk(β·j) defined by (8) and j being the j-th canonical basis vector of Rd. Let Ẑ =√
n/(Kλn)(β̃

1
j − β0

j ) with λn = λ/[cu
√
n/(K log d)].

Suppose that Assumptions 3.1–3.5 hold, nK ≫ log d and nK ≥ 16x2
0c

2
uθ

−2(). If λ ≍
√
log d/n

and T ≥ 1, then for any j ∈c, the RSQR estimator T̃ with weighting matrix k = satisfies

E[exp(itẐ)] → exp(−t2/2) as n → ∞ (26)
for any t ∈ R.

By Theorem 3.3, we know that Ẑ converges in distribution to the standard normal distribution. Hence
we can make statistical inference for β0

j with j ∈c. For example, a valid confidence interval for β0
j is

C1−α =

[
β̃1
j −

√
Kλn

n
· z1−α/2, β̃

1
j +

√
Kλn

n
· z1−α/2

]
(27)

with z1−α/2 being the (1− α/2)-th quantile of (0, 1).

We compare the RSQR estimator with the DSQR estimator (Tan et al., 2022) in terms of statistical
inference. Let Z̃DSQR be the DSQR estimator and let Z̃RSQR be the RSQR estimator. We have the
following discussions.

(i) For the DSQR estimator, it is unknown whether Z̃DSQR converges to the standard normal
distribution when τ ̸= 1/2. When τ = 1/2, ℓsτ (u) = ℓrτ (u) = |u|/2 and hence Z̃DSQR =

Z̃RSQR. By Theorem 3.3, we know that Z̃RSQR converges to (0, 1). Thus Z̃DSQR also
converges to (0, 1).

(ii) The DSQR estimator requires the condition s0 ≪
√
n/K to make inference, while the

RSQR estimator does not require any condition on the sparsity level. The reason is that the
DSQR estimator applies the gradient descent method to the non-smooth check loss, while
we smooth the check loss and adopt a different iterative algorithm.

3.4 COMPUTATION AND COMMUNICATION

In this subsection, we consider the computational and communicational complexities of the proposed
algorithm.

6
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Recall that the central machine sends the global estimator˜to local machines for computing

Qrefine
k () =

1

nk

nk∑
i=1

ℓrτ (yki−⊤
ki) + λ∥∥1 +

1

2
(−̃)⊤k (−̃), ∀k ∈ [K]. (28)

This is a convex optimization problem with a separable structure. It can be computed by the proximal
gradient descent algorithm (Wright, 2015; Solntsev et al., 2015). The per-iteration complexity
is O(dnk), i.e., the O(d) times matrix-vector multiplications and one proximal operator λ(·) =
(1 − λ) · sign(·) · | · |. Thus the total computational complexity on the k-th local machine is
O(T · d

∑K
k=1 nk) = O(T · dn) with T being the number of communication rounds.

We show that the proposed iterative algorithm enjoys the linear convergence rate.

Suppose that Assumptions 3.1–3.3 hold, nK ≫ log d and nK ≥ 16x2
0c

2
uθ

−2(). If λ ≍
√
log d/n,

T ≥ 1 and k =, then the RSQR estimator T̃ satisfies

E
[∥∥∥∥̃ t − t̃−1√

λn

∥∥∥∥
∞

]
≤

[
1− 4(cl/cu)

3θ2()
]
· E

[∥∥∥∥̃ t−1 − t̃−2√
λn

∥∥∥∥
∞

]
(29)

for any t ≥ 2, where λn = λ/[cu
√
n/(K log d)].

By Theorem 3.4, we know that the number of iterations for reaching an ϵ-accurate solution is
O(log(1/ϵ)). Hence the proposed algorithm converges linearly.

Next we consider the communicational complexity. At each step, the central machine only needs to
aggregate the local estimators by taking their average and then send the current global estimator to
local machines. The communicational complexity is O(d log(1/ϵ)).

Compared with the DSQR estimator (Tan et al., 2022), the proposed estimator requires a weaker
condition on the minimum local sample size nK , i.e., nK ≥ 16x2

0c
2
uθ

−2() versus nK ≳ s0 log d.
Hence the proposed estimator requires fewer communication rounds and can be applied to a wider
range of data. For example, consider the case nK ≍ d and the high-dimensional setting d ≍ n1−L

with L > 1. By (21), the required minimum local sample size for the proposed estimator is
nK ≍ d ≍ n1−L

K , which holds since nK ≪ nL
K . However, for the DSQR estimator, the required

minimum local sample size is nK ≳ s0 log d ≳ d log d ≍ n1−L
K log nK , which does not hold since

log nK = o(nL
K).

assistant

4 NUMERICAL EXPERIMENTS

In this section, we conduct the numerical experiments on simulated data to corroborate our theoretical
claims. Throughout our simulations, we consider the high-dimensional linear regression model
=0 +ε · 1n with ∈ Rn, ∈ Rn×d and 0 ∈ Rd. The true parameter 0 is s0-sparse and = {j : β0

j ̸= 0}.
Let = (⊤1,, . . . ,

⊤
n, )

⊤0 and ′ = (y′1, . . . , y
′
n)

⊤ = +|ε| · 1n. Then the data (′, ) satisfies our model.
The set of active predictors is unknown. The tuning parameter λ is selected by the generalized cross
validation (Schmidt, 2010) and the smoothing parameter γ is chosen as γ = 1. The quantile level is
set to be τ = 0.5.

Firstly, we consider the estimation. The design matrix is generated from the multivariate normal
distribution (0, ), where i,j = ρ|i−j| with ρ = 0.5. The noise ε is generated from the normal distribu-
tion (0, 1). We consider the sample size n ∈ {1000, 2000}, the dimension d ∈ {1000, 2000, 3000},
the sparsity s0 = 6 and the number of machines K ∈ {10, 20}. For each setting, we generate 100
replicates of data (′, ). The estimation results are summarized in Table 2.

Next we consider the support recovery. The data generation process is the same as above. The support
recovery results are summarized in Table 3.

Then we consider the inference. The data generation process is the same as above. Let C1−α(τ)
be the confidence interval for the j-th coefficient with τ being the quantile level. We consider
τ ∈ {0.3, 0.5, 0.7}, the sample size n = 1000, the dimension d = 3000, the sparsity s0 = 6 and
the number of machines K = 10. For each setting, we generate 100 replicates of data (′, ). The
inferential results are summarized in Table 4.
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Table 2: Estimation results for various methods, where the numbers are the means of the estimation
errors in the ℓ1-norm and the ℓ2-norm, and the subscripts are the corresponding standard errors.

estimation error
K n d s0 ℓ1 ℓ2

RSQR 10 1000 3000 6 0.0680.010 0.0670.010

DSQR 10 1000 3000 6 0.0680.010 0.0670.010

BAC-QR 10 1000 3000 6 0.0680.010 0.0670.010

DQR 10 1000 3000 6 0.0680.010 0.0670.010

DCQR 10 1000 3000 6 0.0680.010 0.0670.010

RSQR 20 1000 3000 6 0.0680.010 0.0670.010

DSQR 20 1000 3000 6 0.0680.010 0.0670.010

BAC-QR 20 1000 3000 6 0.0680.010 0.0670.010

DQR 20 1000 3000 6 0.0680.010 0.0670.010

DCQR 20 1000 3000 6 0.0680.010 0.0670.010

RSQR 10 2000 3000 6 0.0480.007 0.0470.007

DSQR 10 2000 3000 6 0.0480.007 0.0470.007

BAC-QR 10 2000 3000 6 0.0480.007 0.0470.007

DQR 10 2000 3000 6 0.0480.007 0.0470.007

DCQR 10 2000 3000 6 0.0480.007 0.0470.007

RSQR 20 2000 3000 6 0.0480.007 0.0470.007

DSQR 20 2000 3000 6 0.0480.007 0.0470.007

BAC-QR 20 2000 3000 6 0.0480.007 0.0470.007

DQR 20 2000 3000 6 0.0480.007 0.0470.007

DCQR 20 2000 3000 6 0.0480.007 0.0470.007

Table 3: Support recovery results for various methods, where the numbers are the means of the
Hamming distances, and the subscripts are the corresponding standard errors.

K n d s0 Hamming distance
RSQR 10 1000 3000 6 0.000.00
DSQR 10 1000 3000 6 0.000.00

BAC-QR 10 1000 3000 6 0.000.00
DQR 10 1000 3000 6 0.000.00

DCQR 10 1000 3000 6 0.000.00
RSQR 20 1000 3000 6 0.000.00
DSQR 20 1000 3000 6 0.000.00

BAC-QR 20 1000 3000 6 0.000.00
DQR 20 1000 3000 6 0.000.00

DCQR 20 1000 3000 6 0.000.00
RSQR 10 2000 3000 6 0.000.00
DSQR 10 2000 3000 6 0.000.00

BAC-QR 10 2000 3000 6 0.000.00
DQR 10 2000 3000 6 0.000.00

DCQR 10 2000 3000 6 0.000.00
RSQR 20 2000 3000 6 0.000.00
DSQR 20 2000 3000 6 0.000.00

BAC-QR 20 2000 3000 6 0.000.00
DQR 20 2000 3000 6 0.000.00

DCQR 20 2000 3000 6 0.000.00

Finally, we consider the computation and communication. The data generation process is the same as
above. The computational and communicational results are summarized in Table 5.
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Table 4: Inferential results for various methods with nominal confidence level 1− α = 0.95, where
the numbers are the means of the coverage probabilities and the average lengths, and the subscripts
are the corresponding standard errors. The results for DSQR are taken from Tan et al. (2022).

95% confidence interval
n d s0 ℓ3 = 0.3 ℓ5 = 0.5 ℓ7 = 0.7

RSQR 1000 3000 6 0.950.02 (0.630.01) 0.950.02 (0.630.01) 0.950.02 (0.630.01)
DSQR 1000 3000 6 0.950.02 (0.630.01) 0.950.02 (0.630.01) - (0.630.01)

Table 5: Comparison of the required minimum local sample size for DSQR and RSQR estimators.

K n d s0 required minimum local sample size
DSQR 10 1000 3000 6 s0 log d = 6 log 3000 ≈ 61
RSQR 10 1000 3000 6 16x2

0c
2
uθ

−2() ≈ 16× 0.40352 × 12 × 12 = 2.57
DSQR 20 1000 3000 6 s0 log d = 6 log 3000 ≈ 61
RSQR 20 1000 3000 6 16x2

0c
2
uθ

−2() ≈ 16× 0.40352 × 12 × 12 = 2.57

5 DISCUSSION

In this paper, we propose the RSQR estimator for high-dimensional distributed data. The RSQR
estimator is based on the reversed smoothed check loss and ℓ1-penalization. Theoretically, we
establish the minimax optimal estimation rate for the global estimator and provide a valid confidence
interval for an individual coefficient. Computationally, the proposed algorithm converges linearly and
requires only a logarithmic number of communication rounds.

There are some interesting future directions. Firstly, it is interesting to study the distributed QR with
the classical non-smooth check loss. The advantage is that one does not need to choose the smoothing
parameter γ. Secondly, it is interesting to study the distributed QR under a different setting, e.g.,
federated learning (Li et al., 2020) or mispecified models (Feng et al., 2023; Gao et al., 2022). Lastly,
it is interesting to study other distributed inferential procedures, e.g., the distributed t-test or the
likelihood ratio test.

REFERENCES

Yajie Bao and Weijia Xiong. One-round communication efficient distributed M-estimation. In
International Conference on Artificial Intelligence and Statistics, pp. 46–54. PMLR, 2021.

Alexandre Belloni and Victor Chernozhukov. ℓ1-penalized quantile regression in high-dimensional
sparse models. The Annals of Statistics, 39(1):82–130, 2011.

Jelena Bradic and Mladen Kolar. Uniform inference for high-dimensional quantile regression: linear
functionals and regression rank scores. arXiv preprint arXiv:1702.06209, 2017.

Lanjue Chen and Yong Zhou. Quantile regression in big data: A divide and conquer based strategy.
Computational Statistics & Data Analysis, 144:106892, 2020.

Xi Chen, Weidong Liu, and Yichen Zhang. Quantile regression under memory constraint. The Annals
of Statistics, 47(6):3244–3273, 2019.

Xi Chen, Weidong Liu, Xiaojun Mao, and Zhuoyi Yang. Distributed high-dimensional regression
under a quantile loss function. Journal of Machine Learning Research, 21(1):7432–7474, 2020.

Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American statistical Association, 96(456):1348–1360, 2001.

Jianqing Fan, Yingying Fan, and Emre Barut. Adaptive robust variable selection. The Annals of
Statistics, 42(1):324–351, 2014.

9



Gen
era

ted
by

Cyc
leR

ese
arc

he
r

This paper was generated by CycleResearcher

Jianqing Fan, Yongyi Guo, and Kaizheng Wang. Communication-efficient accurate statistical
estimation. Journal of the American Statistical Association, 116:1–11, 2021.

Xingdong Feng, Qiaochu Liu, and Caixing Wang. A lack-of-fit test for quantile regression process
models. Statistics & Probability Letters, 192:109680, 2023.

Marcelo Fernandes, Emmanuel Guerre, and Eduardo Horta. Smoothing quantile regressions. Journal
of Business & Economic Statistics, 39(1):338–357, 2021.

Yuan Gao, Weidong Liu, Hansheng Wang, Xiaozhou Wang, Yibo Yan, and Riquan Zhang. A review
of distributed statistical inference. Statistical Theory and Related Fields, 6(2):89–99, 2022.

Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with sparsity: the lasso
and generalizations. CRC press, 2015.

Xuming He, Xiaoou Pan, Kean Ming Tan, and Wen-Xin Zhou. Smoothed quantile regression with
large-scale inference. Journal of Econometrics, 232(2):367–388, 2023.

Michael I Jordan, Jason D Lee, and Yun Yang. Communication-efficient distributed statistical
inference. Journal of the American Statistical Association, 114(526):668–681, 2019.

Roger Koenker and Gilbert Bassett Jr. Regression quantiles. Econometrica, 46(1):33–50, 1978.

Jason D Lee, Qiang Liu, Yuekai Sun, and Jonathan E Taylor. Communication-efficient sparse
regression. Journal of Machine Learning Research, 18(1):115–144, 2017.

Runze Li, Dennis KJ Lin, and Bing Li. Statistical inference in massive data sets. Applied Stochastic
Models in Business and Industry, 29(5):399–409, 2013.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020.

Matey Neykov, Jun S Liu, and Tianxi Cai. L1-regularized least squares for support recovery of high
dimensional single index models with gaussian designs. Journal of Machine Learning Research,
17(1):2976–3012, 2016.

Mark Schmidt. Graphical model structure learning with l1-regularization. University of British
Columbia, 2010.

Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed optimization using
an approximate newton-type method. In International Conference on Machine Learning, pp.
1000–1008. PMLR, 2014.

Stefan Solntsev, Jorge Nocedal, and Richard H Byrd. An algorithm for quadratic ℓ1-regularized
optimization with a flexible active-set strategy. Optimization Methods and Software, 30(6):1213–
1237, 2015.

Kean Ming Tan, Heather Battey, and Wen-Xin Zhou. Communication-constrained distributed quantile
regression with optimal statistical guarantees. Journal of Machine Learning Research, 23:1–61,
2022.

Martin J Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using
ℓ1-constrained quadratic programming (lasso). IEEE Transactions on Information Theory, 55(5):
2183–2202, 2009.

Jialei Wang, Mladen Kolar, Nathan Srebro, and Tong Zhang. Efficient distributed learning with
sparsity. In International Conference on Machine Learning, pp. 3636–3645. PMLR, 2017.

Stephen J Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3–34, 2015.

Qifa Xu, Chao Cai, Cuixia Jiang, Fang Sun, and Xue Huang. Block average quantile regression for
massive dataset. Statistical Papers, 61(1):141–165, 2020.

Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals of
Statistics, 38(2):894–942, 2010.

10



Gen
era

ted
by

Cyc
leR

ese
arc

he
r

This paper was generated by CycleResearcher

Yuchen Zhang, John C. Duchi, and Martin J. Wainwright. Communication-efficient algorithms for
statistical optimization. Journal of Machine Learning Research, 14(68):3321–3363, 2013.

Yuchen Zhang, John Duchi, and Martin Wainwright. Divide and conquer kernel ridge regression: A
distributed algorithm with minimax optimal rates. Journal of Machine Learning Research, 16(1):
3299–3340, 2015.

Peng Zhao and Bin Yu. On model selection consistency of lasso. Journal of Machine Learning
Research, 7:2541–2563, 2006.

11


	Introduction
	Methodology
	Theoretical Results
	Definitions and assumptions
	Estimation
	Inference
	Computation and communication

	Numerical Experiments
	Discussion

