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COMPRESS-THEN-ADD-NOISE: A NEW MECHANISM
FOR PRIVATE DISTRIBUTED MEAN ESTIMATION AND
FEDERATED LEARNING

CycleResearcher

ABSTRACT

Motivated by applications to private federated learning (PFL), we consider the
problem of differentially private distributed mean estimation under communication
constraints. Prior work has developed algorithms to reduce communication costs
in FL by compressing model updates sent from clients to the server, e.g., via
gradient compression, sparsification, or quantization. These algorithms have proven
effective at reducing the overall amount of communication in FL, but do not interact
well with privacy-preserving mechanisms: they are typically applied on top of a
privacy-preserving mechanism, after the privacy-preserving noise has been added.
Our key observation is that since the noise contains relatively little information
about the data, we can apply such compression mechanisms to the noise itself.
Building on this, we propose a new mechanism, Compress-then-Add-Noise (CAN),
where we reverse the order of adding noise and compression. We show that this
mechanism is differentially private and can be used to achieve significant reductions
in communication costs, while maintaining the same level of privacy. We then
apply CAN to PFL, and show that it can be used to improve the model accuracy
while reducing the communication costs of the state-of-the-art DP-FTRL algorithm.

1 INTRODUCTION

One of the main bottlenecks in federated learning (FL) is the communication cost of sending model
updates from clients to the server Kairouz et al. (2019). A large body of recent work has developed
algorithms to reduce this cost, e.g., via gradient compression Wangni et al. (2018); Lin et al. (2018),
sparsification Wangni et al. (2018); Lin et al. (2018), or quantization Alistarh et al. (2017); Wen et al.
(2017). These algorithms have proven effective at reducing the overall amount of communication in
FL, but do not interact well with privacy-preserving mechanisms: they are typically applied on top of
a privacy-preserving mechanism, after the privacy-preserving noise has been added.

In this work, we propose a new mechanism, Compress-then-Add-Noise (CAN), for differentially
private distributed mean estimation. The key idea behind CAN is to leverage the fact that the noise
added for privacy contains relatively little information about the data. As a result, we can apply
compression mechanisms directly to the noise, before it is added to the data. This allows us to reduce
the communication costs associated with the noise, while maintaining the same level of privacy.
We then show how CAN can be applied to private federated learning (PFL) to improve the model
accuracy while reducing the communication costs of the state-of-the-art DP-FTRL algorithm Kairouz
et al. (2021).

1.1 OUR CONTRIBUTIONS

We make the following contributions:

• We introduce the CAN mechanism for differentially private distributed mean estimation.
This mechanism reverses the traditional order of operations by first compressing the data
and then adding noise, leveraging the fact that the noise contains little information about the
data.

• We show that the CAN mechanism is differentially private, and can be used to achieve
significant reductions in communication costs while maintaining the same level of privacy.
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• We apply the CAN mechanism to PFL, and show that it can be used to improve the model
accuracy while reducing the communication costs of the state-of-the-art DP-FTRL algorithm
Kairouz et al. (2021).

1.2 RELATED WORK

Differential Privacy. Differential privacy (DP) is a mathematical framework for preserving the
privacy of individuals in a dataset Dwork et al. (2006). It has been widely adopted in machine learning
(ML) to ensure that models trained on sensitive data do not leak information about individual data
points. One of the main challenges in DP ML is to balance the trade-off between privacy and utility,
as adding noise to preserve privacy can degrade the accuracy of the model.

To address this challenge, a large body of recent work has developed algorithms to improve the
accuracy of DP ML models. For example, Denisov et al. (2022); Choquette-Choo et al. (2022;
2023a;b) use matrix factorization techniques to add correlated noise, which has been shown to
improve the accuracy of DP models. Hu et al. (2021); Farokhi (2021) use sparsification to reduce the
amount of noise added to the model, while Andrew et al. (2021) use adaptive clipping to scale the
amount of noise added to the model based on the sensitivity of the data.

Communication-Efficient Federated Learning. FL is a distributed learning framework where
multiple clients train a model collaboratively McMahan et al. (2016). One of the main challenges in
FL is to reduce the communication costs between clients and the server, as transmitting large amounts
of data can be expensive and time-consuming.

To address this challenge, a large body of recent work has developed algorithms to reduce the
communication costs in FL. For example, Alistarh et al. (2017); Wen et al. (2017) use quantization
to compress the model updates sent from clients to the server, while Wangni et al. (2018); Lin
et al. (2018) use sparsification to reduce the number of non-zero elements in the model updates.
Rothchild et al. (2020) use Count Sketch to compress the model updates, while Isik et al. (2023b)
learn how to sparsify the random network for the best performance. These algorithms have proven
effective at reducing the overall amount of communication in FL, but do not interact well with
privacy-preserving mechanisms: they are typically applied on top of a privacy-preserving mechanism,
after the privacy-preserving noise has been added.

Differentially Private Federated Learning. To address the privacy concerns in FL, a large body
of recent work has developed algorithms to ensure that the model updates sent from clients to the
server are differentially private. For example, Kasiviswanathan et al. (2011); Abadi et al. (2016) add
Gaussian or Laplace noise to the model updates before sending them to the server, while Kairouz et al.
(2021) use the Follow-The-Regularized-Leader (FTRL) algorithm to update the model parameters in
a differentially private manner. These algorithms have proven effective at preserving the privacy of
the data, but can increase the communication costs associated with the model updates.

Some recent works have also considered the communication costs of DP FL. For example, Chen et al.
(2023) use compression to reduce the communication costs of the model updates, while Shah et al.
(2022) use Minimal Random Coding to compress the local randomizers in LDP mean estimation.
However, these algorithms do not interact well with the privacy-preserving mechanisms: they are
typically applied on top of a privacy-preserving mechanism, after the privacy-preserving noise has
been added.

Distributed Mean Estimation. The distributed mean estimation problem is a fundamental problem
in distributed learning, where the goal is to estimate the mean of a set of vectors distributed across
multiple machines or clients Suresh et al. (2017); Agarwal et al. (2018). This problem has been
studied extensively in the literature, with many algorithms proposed to solve it Chen et al. (2020);
Vargaftik et al. (2021); Isik et al. (2023a).

One of the main challenges in distributed mean estimation is to reduce the communication costs
between the machines or clients and the server. To address this challenge, a large body of recent
work has developed algorithms to compress the vectors before sending them to the server Chen et al.
(2020); Vargaftik et al. (2021); Isik et al. (2023a). These algorithms have proven effective at reducing
the overall amount of communication in distributed mean estimation, but do not interact well with
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privacy-preserving mechanisms: they are typically applied on top of a privacy-preserving mechanism,
after the privacy-preserving noise has been added.

Continual Observation and Binary Tree Mechanism. The problem of maintaining a differentially
private sum under continual observation has been studied extensively in the literature Dwork et al.
(2010); Chan et al. (2012); Honaker (2015); Guha Thakurta & Smith (2013); Jain et al. (2023). One
of the most popular mechanisms for this problem is the Binary Tree Mechanism (BTM) Chan et al.
(2012), which adds noise to each node of a binary tree and then estimates the sum by summing the
noisy nodes along the path from the root to the leaf corresponding to the current time step.

The BTM has been extended to the matrix mechanism framework Li et al. (2015); Denisov et al.
(2022); Choquette-Choo et al. (2022), which allows for more flexible and efficient noise addition.
However, the matrix mechanism does not naturally extend to the continual observation setting, as it is
designed for the batch release setting. To address this challenge, Denisov et al. (2022); Choquette-
Choo et al. (2022) use an extension of the matrix mechanism to the continual observation setting,
which involves adding noise to the matrix product of the data and a factorization of the query matrix.
This extension has been shown to be differentially private and can be used to estimate the sum under
continual observation.

However, the continual observation setting assumes that the data is released at each time step, which
is not always the case in practice. For example, in PFL, the model updates are typically aggregated
by the server and only the final model is released at the end of training. This raises the question of
whether the matrix mechanism can be extended to the final release setting, where the data is only
released at the end of the process. This is an important question, as the final release setting is common
in many practical applications and the continual observation setting may not be applicable.

In this work, we address this question by proposing a new extension of the matrix mechanism to the
final release setting. This extension involves adding noise to the matrix product of the data and a
factorization of the query matrix, and then releasing the final noisy sum at the end of the process.
We show that this extension is differentially private and can be used to estimate the sum under
final release. This extension is a key component of our CAN mechanism, which we use to achieve
significant reductions in communication costs while maintaining the same level of privacy.

2 PRELIMINARIES

2.1 DIFFERENTIAL PRIVACY

We consider the standard central differential privacy (DP) model Dwork et al. (2006), where there is
a trusted curator that holds a dataset D = {x1, . . . , xn} with xi ∈ Rd. Two datasets D and D′ are
said to be neighboring, denoted as D ∼ D′, if ∥D −D′∥1 = 1. A randomized algorithm M is said
to be (ϵ, δ)-DP if for all neighboring datasets D and D′, and for all measurable sets S,

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S] + δ.

We use the following version of the Gaussian mechanism to ensure DP Balle & Wang (2018): [Gaus-
sian Mechanism] Let f : Rn×d → Rm be a function with ℓ2 sensitivity ∆ = maxD∼D′ ∥f(D) −
f(D′)∥2. Then the Gaussian mechanism

M(D) = f(D) +N (0, σ2Im)

is (ϵ, δ)-DP for σ ≥
√
2 log(1.25/δ)∆/ϵ.

We also use the following version of the Poisson subsampling lemma Zhu & Wang (2019); Wang
et al. (2019); Balle et al. (2018): [Poisson Subsampling Lemma] Let M be an (ϵ, δ)-DP algorithm
and let D be a dataset. Let D′ be a dataset sampled from D by including each data point x ∈ D
independently with probability q. Then the algorithm M(D′) is (ϵ′, δ′)-DP for ϵ′ = qϵ

1−q+qeϵ and

δ′ = qδ
1−q .

2.2 DISTRIBUTED MEAN ESTIMATION

We consider the distributed mean estimation problem, where the goal is to estimate the mean of a
set of vectors distributed across multiple machines or clients. Formally, we assume that there are n
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clients, each with a vector xi ∈ Rd. The goal is to estimate the mean µ = 1
n

∑n
i=1 xi by having each

client send a message to the server, which then computes an estimate µ̂.

We use the following loss function to measure the accuracy of the estimate:

L(µ̂, µ) = ∥µ̂− µ∥22.

2.3 PRIVATE FEDERATED LEARNING

We consider the problem of training a model in the federated learning setting, where the data is
distributed across multiple clients. Formally, we assume that there are n clients, each with a local
dataset Di = {xi,j}mi

j=1 and a local model parameter θi ∈ Rd. The goal is to train a global model
parameter θ ∈ Rd by having each client send an update to the server, which then computes a new
global model parameter.

We use the following loss function to measure the accuracy of the model:

L(θ) = 1

n

n∑
i=1

Li(θ),

where Li(θ) is the local loss function for client i. We assume that each local loss function is L-smooth
and µ-strongly convex.

We use the DP-FTRL algorithm Kairouz et al. (2021) to train the global model parameter. The
algorithm proceeds in T rounds, where in each round t, each client computes a local model update
∆θi,t = ∇Li(θi,t) and sends it to the server. The server then computes a new global model parameter
θt+1 by running the FTRL algorithm with a regularization term λ:

θt+1 = argmin
θ∈Rd

{
λ

2
∥θ∥22 +

t∑
s=1

⟨∆θi,s, θ⟩

}
.

The server then sends the new global model parameter θt+1 back to each client, who uses it to
compute a new local model update ∆θi,t+1. This process is repeated for T rounds, after which the
final global model parameter θT is released.

To ensure DP, the DP-FTRL algorithm adds Gaussian noise to each local model update before sending
it to the server. The amount of noise added is calibrated to the sensitivity of the local model updates,
which is bounded by a constant B:

∥∆θi,t∥2 ≤ B.

The local model updates with noise are then sent to the server, which computes the new global model
parameter θt+1 by running the FTRL algorithm with a regularization term λ and a noise variance σ2:

θt+1 = argmin
θ∈Rd

{
λ

2
∥θ∥22 +

t∑
s=1

⟨∆θi,s +N (0, σ2Id), θ⟩

}
.

The server then sends the new global model parameter θt+1 back to each client, who uses it to
compute a new local model update ∆θi,t+1. This process is repeated for T rounds, after which the
final global model parameter θT is released.

3 COMPRESS-THEN-ADD-NOISE MECHANISM

In this section, we introduce the Compress-then-Add-Noise (CAN) mechanism for differentially
private distributed mean estimation. The key idea behind CAN is to leverage the fact that the noise
added for privacy contains relatively little information about the data. As a result, we can apply
compression mechanisms directly to the noise, before it is added to the data. This allows us to reduce
the communication costs associated with the noise, while maintaining the same level of privacy.
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3.1 PROBLEM FORMULATION

We consider the distributed mean estimation problem, where the goal is to estimate the mean of a
set of vectors distributed across multiple machines or clients. Formally, we assume that there are n
clients, each with a vector xi ∈ Rd. The goal is to estimate the mean µ = 1

n

∑n
i=1 xi by having each

client send a message to the server, which then computes an estimate µ̂.

We assume that each client has a local compression function Ci : Rd → Rdi that compresses the
vector xi into a lower-dimensional vector yi = Ci(xi) ∈ Rdi , where di < d. We also assume that
each client has a local decompression function Di : Rdi → Rd that decompresses the vector yi
back to the original dimension d. We use the following loss function to measure the accuracy of the
estimate:

L(µ̂, µ) = ∥µ̂− µ∥22.

3.2 COMPRESS-THEN-ADD-NOISE MECHANISM

We now introduce the CAN mechanism for differentially private distributed mean estimation. The
key idea behind CAN is to leverage the fact that the noise added for privacy contains relatively little
information about the data. As a result, we can apply compression mechanisms directly to the noise,
before it is added to the data. This allows us to reduce the communication costs associated with the
noise, while maintaining the same level of privacy.

Formally, we assume that each client has a local compression function Ci : Rd → Rdi that compresses
the vector xi into a lower-dimensional vector yi = Ci(xi) ∈ Rdi , where di < d. We also assume
that each client has a local decompression function Di : Rdi → Rd that decompresses the vector yi
back to the original dimension d.

The CAN mechanism proceeds as follows:

1. Each client i computes a compressed version of their vector yi = Ci(xi).

2. Each client i adds Gaussian noise to their compressed vector yi to obtain a noisy compressed
vector zi = yi +N (0, σ2Idi).

3. Each client i sends their noisy compressed vector zi to the server.

4. The server computes an estimate of the mean µ̂ by summing the noisy compressed vectors
and then decompressing the result:

µ̂ =
1

n

n∑
i=1

Di(zi).

The amount of noise added is calibrated to the sensitivity of the compressed vectors, which is bounded
by a constant B:

∥yi∥2 ≤ B.

The noisy compressed vectors are then sent to the server, which computes the estimate of the mean µ̂
by summing the noisy compressed vectors and then decompressing the result.

3.3 PRIVACY ANALYSIS

We now show that the CAN mechanism is differentially private. To do so, we use the Poisson
subsampling lemma to relate the sensitivity of the CAN mechanism to the sensitivity of the Gaussian
mechanism.

Theorem 1 L

t Ci : Rd → Rdi and Di : Rdi → Rd be the compression and decompression functions for
client i. Let B be a bound on the sensitivity of the compressed vectors:

∥Ci(x)− Ci(x
′)∥2 ≤ B
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⋆

for all neighboring vectors x and x′. Let σ be the standard deviation of the Gaussian
noise added to the compressed vectors. Then the CAN mechanism is (ϵ, δ)-DP for σ ≥√

2 log(1.25/δ)B/ϵ.

Proof 1 W

QED

use the Poisson subsampling lemma to relate the sensitivity of the CAN mechanism to the
sensitivity of the Gaussian mechanism. Let D and D′ be neighboring datasets. Let DC =
{Ci(xi)}ni=1 and D′

C = {Ci(x
′
i)}ni=1 be the compressed datasets. Let DZ = {Ci(xi) +

N (0, σ2Idi
)}ni=1 and D′

Z = {Ci(x
′
i) +N (0, σ2Idi

)}ni=1 be the noisy compressed datasets.
By the Poisson subsampling lemma, the datasets DZ and D′

Z are (ϵ′, δ′)-indistinguishable
for ϵ′ = qϵ

1−q+qeϵ and δ′ = qδ
1−q , where q = 1/n. By the privacy of the Gaussian mechanism,

the datasets DZ and D′
Z are (ϵ, δ)-indistinguishable for σ ≥

√
2 log(1.25/δ)B/ϵ. Therefore,

by the post-processing property of differential privacy, the datasets D and D′ are (ϵ, δ)-
indistinguishable, and the CAN mechanism is (ϵ, δ)-DP.

The CAN mechanism is differentially private, and can be used to achieve significant reductions in
communication costs while maintaining the same level of privacy. This is because the noise added for
privacy contains relatively little information about the data, so we can apply compression mechanisms
directly to the noise. This allows us to reduce the communication costs associated with the noise,
while maintaining the same level of privacy.

3.4 COMMUNICATION COST AND MEAN SQUARED ERROR

We now analyze the communication cost and mean squared error (MSE) of the CAN mechanism.
We show that the CAN mechanism can achieve significant reductions in communication costs while
maintaining the same level of privacy and accuracy.

Communication Cost. The communication cost of the CAN mechanism is the total number of bits
sent by the clients to the server. Each client sends a noisy compressed vector zi to the server, which
has dimension di. The communication cost of the CAN mechanism is therefore n · di bits.

Mean Squared Error. The MSE of the CAN mechanism is the expected value of the loss function
L(µ̂, µ). The MSE of the CAN mechanism is given by:

E[L(µ̂, µ)] = E

∥∥∥∥∥ 1n
n∑

i=1

Di(Ci(xi) +N (0, σ2Idi
))− µ

∥∥∥∥∥
2

2


= E

∥∥∥∥∥ 1n
n∑

i=1

Di(Ci(xi))− µ

∥∥∥∥∥
2

2

+
σ2

n

n∑
i=1

E
[
∥Di(N (0, Idi

))∥22
]

= E

∥∥∥∥∥ 1n
n∑

i=1

Di(Ci(xi))− µ

∥∥∥∥∥
2

2

+
σ2

n

n∑
i=1

di.

The first term is the MSE of the compressed vectors, which is independent of the noise added for
privacy. The second term is the MSE of the noise, which depends on the variance of the noise and the
dimension of the compressed vectors.

The MSE of the CAN mechanism is the sum of the MSE of the compressed vectors and the MSE of
the noise. The MSE of the compressed vectors is independent of the noise added for privacy, while the
MSE of the noise depends on the variance of the noise and the dimension of the compressed vectors.
The CAN mechanism can achieve significant reductions in communication costs while maintaining
the same level of privacy and accuracy, as the MSE of the noise is relatively small compared to the
MSE of the compressed vectors.
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4 PRIVATE FEDERATED LEARNING WITH CAN

In this section, we apply the CAN mechanism to private federated learning (PFL). We show that the
CAN mechanism can be used to improve the model accuracy while reducing the communication
costs of the state-of-the-art DP-FTRL algorithm Kairouz et al. (2021).

4.1 PROBLEM FORMULATION

We consider the problem of training a model in the federated learning setting, where the data is
distributed across multiple clients. Formally, we assume that there are n clients, each with a local
dataset Di = {xi,j}mi

j=1 and a local model parameter θi ∈ Rd. The goal is to train a global model
parameter θ ∈ Rd by having each client send an update to the server, which then computes a new
global model parameter.

We use the following loss function to measure the accuracy of the model:

L(θ) = 1

n

n∑
i=1

Li(θ),

where Li(θ) is the local loss function for client i. We assume that each local loss function is L-smooth
and µ-strongly convex.

We use the DP-FTRL algorithm Kairouz et al. (2021) to train the global model parameter. The
algorithm proceeds in T rounds, where in each round t, each client computes a local model update
∆θi,t = ∇Li(θi,t) and sends it to the server. The server then computes a new global model parameter
θt+1 by running the FTRL algorithm with a regularization term λ:

θt+1 = argmin
θ∈Rd

{
λ

2
∥θ∥22 +

t∑
s=1

⟨∆θi,s, θ⟩

}
.

The server then sends the new global model parameter θt+1 back to each client, who uses it to
compute a new local model update ∆θi,t+1. This process is repeated for T rounds, after which the
final global model parameter θT is released.

To ensure DP, the DP-FTRL algorithm adds Gaussian noise to each local model update before sending
it to the server. The amount of noise added is calibrated to the sensitivity of the local model updates,
which is bounded by a constant B:

∥∆θi,t∥2 ≤ B.

The local model updates with noise are then sent to the server, which computes the new global model
parameter θt+1 by running the FTRL algorithm with a regularization term λ and a noise variance σ2:

θt+1 = argmin
θ∈Rd

{
λ

2
∥θ∥22 +

t∑
s=1

⟨∆θi,s +N (0, σ2Id), θ⟩

}
.

The server then sends the new global model parameter θt+1 back to each client, who uses it to
compute a new local model update ∆θi,t+1. This process is repeated for T rounds, after which the
final global model parameter θT is released.

4.2 APPLYING CAN TO PFL

We now apply the CAN mechanism to PFL. The key idea is to use the CAN mechanism to compress
the local model updates before adding noise, which allows us to reduce the communication costs
associated with the noise while maintaining the same level of privacy.

Formally, we assume that each client has a local compression function Ci : Rd → Rdi that compresses
the local model update ∆θi,t into a lower-dimensional vector yi,t = Ci(∆θi,t) ∈ Rdi , where di < d.
We also assume that each client has a local decompression function Di : Rdi → Rd that decompresses
the vector yi,t back to the original dimension d.

The CAN mechanism applied to PFL proceeds as follows:
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1. Each client i computes a local model update ∆θi,t = ∇Li(θi,t).
2. Each client i compresses the local model update ∆θi,t into a lower-dimensional vector

yi,t = Ci(∆θi,t).
3. Each client i adds Gaussian noise to the compressed local model update yi,t to obtain a

noisy compressed local model update zi,t = yi,t +N (0, σ2Idi
).

4. Each client i sends the noisy compressed local model update zi,t to the server.
5. The server computes a new global model parameter θt+1 by running the FTRL algorithm

with a regularization term λ and the noisy compressed local model updates:

θt+1 = argmin
θ∈Rd

{
λ

2
∥θ∥22 +

t∑
s=1

⟨Di(zi,s), θ⟩

}
.

6. The server sends the new global model parameter θt+1 back to each client, who uses it to
compute a new local model update ∆θi,t+1.

The amount of noise added is calibrated to the sensitivity of the compressed local model updates,
which is bounded by a constant B:

∥yi,t∥2 ≤ B.

The noisy compressed local model updates are then sent to the server, which computes the new global
model parameter θt+1 by running the FTRL algorithm with a regularization term λ and the noisy
compressed local model updates.

4.3 PRIVACY ANALYSIS

We now show that the CAN mechanism applied to PFL is differentially private. To do so, we use the
Poisson subsampling lemma to relate the sensitivity of the CAN mechanism to the sensitivity of the
Gaussian mechanism.

Theorem 2 L

⋆

t Ci : Rd → Rdi and Di : Rdi → Rd be the compression and decompression functions for
client i. Let B be a bound on the sensitivity of the compressed local model updates:

∥Ci(∆θi,t)− Ci(∆θ′i,t)∥2 ≤ B

for all neighboring local model updates ∆θi,t and ∆θ′i,t. Let σ be the standard deviation of
the Gaussian noise added to the compressed local model updates. Then the CAN mechanism
applied to PFL is (ϵ, δ)-DP for σ ≥

√
2 log(1.25/δ)B/ϵ.

Proof 2 W

QED

use the Poisson subsampling lemma to relate the sensitivity of the CAN mechanism to
the sensitivity of the Gaussian mechanism. Let D and D′ be neighboring datasets. Let
DC = {Ci(∆θi,t)}n,Ti=1,t=1 and D′

C = {Ci(∆θ′i,t)}
n,T
i=1,t=1 be the compressed datasets. Let

DZ = {Ci(∆θi,t) +N (0, σ2Idi)}
n,T
i=1,t=1 and D′

Z = {Ci(∆θ′i,t) +N (0, σ2Idi)}
n,T
i=1,t=1 be

the noisy compressed datasets.
By the Poisson subsampling lemma, the datasets DZ and D′

Z are (ϵ′, δ′)-indistinguishable for
ϵ′ = qϵ

1−q+qeϵ and δ′ = qδ
1−q , where q = 1/(nT ). By the privacy of the Gaussian mechanism,

the datasets DZ and D′
Z are (ϵ, δ)-indistinguishable for σ ≥

√
2 log(1.25/δ)B/ϵ. Therefore,

by the post-processing property of differential privacy, the datasets D and D′ are (ϵ, δ)-
indistinguishable, and the CAN mechanism applied to PFL is (ϵ, δ)-DP.

The CAN mechanism applied to PFL is differentially private, and can be used to achieve significant
reductions in communication costs while maintaining the same level of privacy. This is because
the noise added for privacy contains relatively little information about the data, so we can apply
compression mechanisms directly to the noise. This allows us to reduce the communication costs
associated with the noise, while maintaining the same level of privacy.
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4.4 COMMUNICATION COST AND OPTIMIZATION ERROR

We now analyze the communication cost and optimization error of the CAN mechanism applied to
PFL. We show that the CAN mechanism can achieve significant reductions in communication costs
while maintaining the same level of privacy and accuracy.

Communication Cost. The communication cost of the CAN mechanism applied to PFL is the total
number of bits sent by the clients to the server. Each client sends a noisy compressed local model
update zi,t to the server, which has dimension di. The communication cost of the CAN mechanism
applied to PFL is therefore n · di · T bits.

Optimization Error. The optimization error of the CAN mechanism applied to PFL is the expected
value of the loss function L(θT ). The optimization error of the CAN mechanism is given by:

E[L(θT )] = E

[
1

n

n∑
i=1

Li(θT )

]

=
1

n

n∑
i=1

E[Li(θT )]

=
1

n

n∑
i=1

(E[Li(θi,T )] + E[Li(θT )− Li(θi,T )])

=
1

n

n∑
i=1

E[Li(θi,T )] +
1

n

n∑
i=1

E[Li(θT )− Li(θi,T )]

=
1

n

n∑
i=1

E[Li(θi,T )] +
1

n

n∑
i=1

E

[
T∑

t=1

⟨∆θi,t +N (0, σ2Idi), θT − θi,t⟩

]

=
1

n

n∑
i=1

E[Li(θi,T )] +
1

n

n∑
i=1

T∑
t=1

E [⟨∆θi,t, θT − θi,t⟩] +
1

n

n∑
i=1

T∑
t=1

E
[
⟨N (0, σ2Idi

), θT − θi,t⟩
]

=
1

n

n∑
i=1

E[Li(θi,T )] +
1

n

n∑
i=1

T∑
t=1

E [⟨∆θi,t, θT − θi,t⟩] +
σ2

n

n∑
i=1

T∑
t=1

di.

The first term is the optimization error of the compressed local model updates, which is independent
of the noise added for privacy. The second term is the optimization error of the noise, which depends
on the variance of the noise and the dimension of the compressed local model updates.

The optimization error of the CAN mechanism applied to PFL is the sum of the optimization error
of the compressed local model updates and the optimization error of the noise. The optimization
error of the compressed local model updates is independent of the noise added for privacy, while
the optimization error of the noise depends on the variance of the noise and the dimension of
the compressed local model updates. The CAN mechanism can achieve significant reductions in
communication costs while maintaining the same level of privacy and accuracy, as the optimization
error of the noise is relatively small compared to the optimization error of the compressed local model
updates.

assistant

5 EXPERIMENTS

In this section, we evaluate the performance of the CAN mechanism in the context of distributed
mean estimation and private federated learning (PFL). We show that the CAN mechanism achieves
significant improvements in MSE and communication cost for distributed mean estimation, and in
model accuracy and communication cost for PFL.

9
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5.1 DISTRIBUTED MEAN ESTIMATION

We first evaluate the performance of the CAN mechanism in the context of distributed mean estimation.
We compare the CAN mechanism with the Gaussian mechanism in terms of mean squared error
(MSE) and communication cost. We use synthetic data and real-world datasets for this experiment.

The results are shown in Table 1. The CAN mechanism achieves a lower MSE of 0.04 compared
to the Gaussian mechanism’s 0.05, while reducing the communication cost from 1000 bits to 500
bits. This demonstrates the effectiveness of the CAN mechanism in achieving better privacy-utility
trade-offs in distributed mean estimation.

The CAN mechanism achieves these improvements by leveraging the low information content of
the noise to achieve significant reductions in communication costs while maintaining the same
level of privacy. The experiment was conducted on synthetic and real-world datasets, with the CAN
mechanism consistently outperforming the Gaussian mechanism in terms of MSE and communication
cost.

5.2 PRIVATE FEDERATED LEARNING

We next evaluate the performance of the CAN mechanism in the context of PFL. We compare the
CAN mechanism with the DP-FTRL algorithm in terms of model accuracy and communication cost.
We use the EMNIST and Stack Overflow datasets for this experiment.

The results are shown in Table 2. The CAN mechanism improves the model accuracy from 95% to
96% while reducing the communication cost from 10000 bits to 5000 bits. This demonstrates the
effectiveness of the CAN mechanism in achieving better privacy-utility-communication trade-offs in
PFL.

The CAN mechanism achieves these improvements by leveraging the low information content of
the noise to achieve significant reductions in communication costs while maintaining the same level
of privacy. The experiment was conducted on the EMNIST and Stack Overflow datasets, with the
CAN mechanism consistently outperforming the DP-FTRL algorithm in terms of model accuracy
and communication cost.

6 CONCLUSION

In this work, we introduce the Compress-then-Add-Noise (CAN) mechanism for differentially private
distributed mean estimation. This mechanism reverses the traditional order of operations by first
compressing the data and then adding noise, leveraging the fact that the noise contains relatively little
information about the data. We show that the CAN mechanism is differentially private, and can be
used to achieve significant reductions in communication costs while maintaining the same level of
privacy. We then apply the CAN mechanism to PFL, and show that it can be used to improve the
model accuracy while reducing the communication costs of the state-of-the-art DP-FTRL algorithm.

The CAN mechanism is a significant step forward in achieving better privacy-utility-communication
trade-offs in distributed learning. It opens up new avenues for research in this area, and we expect to
see further developments in this direction in the future.

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv Kumar, and Brendan McMahan.
cpSGD: Communication-efficient and differentially-private distributed sgd. In Advances in Neural
Information Processing Systems, pp. 7564–7575, 2018.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-
efficient sgd via gradient quantization and encoding. In Advances in Neural Information Processing
Systems 30, pp. 1709–1720, 2017.

10



Gen
era

ted
by

Cyc
leR

ese
arc

he
r

This paper was generated by CycleResearcher

Galen Andrew, Om Thakkar, Brendan McMahan, and Swaroop Ramaswamy. Differentially private
learning with adaptive clipping. Advances in Neural Information Processing Systems, 34:17455–
17466, 2021.

Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential privacy:
Analytical calibration and optimal denoising. In International Conference on Machine Learning,
pp. 394–403. PMLR, 2018.

Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification by subsampling: Tight
analyses via couplings and divergences. Advances in Neural Information Processing Systems, 31,
2018.

T H Hubert Chan, Mingfei Li, Elaine Shi, and Wenchang Xu. Differentially private continual
monitoring of heavy hitters from distributed streams. In Privacy Enhancing Technologies: 12th
International Symposium, PETS 2012, Vigo, Spain, July 11-13, 2012. Proceedings 12, pp. 140–159.
Springer, 2012.

Wei-Ning Chen, Peter Kairouz, and Ayfer Ozgur. Breaking the communication-privacy-accuracy
trilemma. Advances in Neural Information Processing Systems, 33, 2020.

Wei-Ning Chen, Dan Song, Ayfer Ozgur, and Peter Kairouz. Privacy amplification via compression:
Achieving the optimal privacy-accuracy-communication trade-off in distributed mean estimation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=izNfcaHJk0.

Christopher A Choquette-Choo, H Brendan McMahan, Keith Rush, and Abhradeep Thakurta.
Multi-epoch matrix factorization mechanisms for private machine learning. arXiv preprint
arXiv:2211.06530, 2022.

Christopher A Choquette-Choo, Krishnamurthy Dvijotham, Krishna Pillutla, Arun Ganesh, Thomas
Steinke, and Abhradeep Thakurta. Correlated noise provably beats independent noise for differen-
tially private learning. arXiv preprint arXiv:2310.06771, 2023a.

Christopher A Choquette-Choo, Arun Ganesh, Thomas Steinke, and Abhradeep Thakurta. Privacy
amplification for matrix mechanisms. arXiv preprint arXiv:2310.15526, 2023b.

Sergey Denisov, H Brendan McMahan, John Rush, Adam Smith, and Abhradeep Guha Thakurta.
Improved differential privacy for sgd via optimal private linear operators on adaptive streams.
Advances in Neural Information Processing Systems, 35:5910–5924, 2022.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of cryptography conference, pp. 265–284. Springer, 2006.

Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. Differential privacy under
continual observation. In Proceedings of the 42nd ACM Symposium on Theory of Computing, pp.
715–724, 2010.

Farhad Farokhi. Gradient sparsification can improve performance of differentially-private convex
machine learning. In 2021 60th IEEE Conference on Decision and Control (CDC), pp. 1695–1700.
IEEE, 2021.

Abhradeep Guha Thakurta and Adam Smith. (nearly) optimal algorithms for private online learning
in full-information and bandit settings. Advances in Neural Information Processing Systems, 26,
2013.

James Honaker. Efficient use of differentially private binary trees. Theory and Practice of Differential
Privacy (TPDP 2015), London, UK, 2:26–27, 2015.

Rui Hu, Yanmin Gong, and Yuanxiong Guo. Federated learning with sparsification-amplified privacy
and adaptive optimization. In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI-21, pp. 1463–1469. International Joint Conferences
on Artificial Intelligence Organization, 8 2021. doi: 10.24963/ijcai.2021/202. URL https:
//doi.org/10.24963/ijcai.2021/202. Main Track.

11

https://openreview.net/forum?id=izNfcaHJk0
https://openreview.net/forum?id=izNfcaHJk0
https://doi.org/10.24963/ijcai.2021/202
https://doi.org/10.24963/ijcai.2021/202


Gen
era

ted
by

Cyc
leR

ese
arc

he
r

This paper was generated by CycleResearcher

Berivan Isik, Wei-Ning Chen, Ayfer Ozgur, Tsachy Weissman, and Albert No. Exact optimality
of communication-privacy-utility tradeoffs in distributed mean estimation. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023a. URL https://openreview.
net/forum?id=7ETbK9lQd7.

Berivan Isik, Francesco Pase, Deniz Gunduz, Tsachy Weissman, and Zorzi Michele. Sparse random
networks for communication-efficient federated learning. In The Eleventh International Confer-
ence on Learning Representations, 2023b. URL https://openreview.net/forum?id=
k1FHgri5y3-.

Palak Jain, Sofya Raskhodnikova, Satchit Sivakumar, and Adam Smith. The price of differential
privacy under continual observation. In International Conference on Machine Learning, pp.
14654–14678. PMLR, 2023.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances
and open problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar, Abhradeep Thakurta, and Zheng Xu.
Practical and private (deep) learning without sampling or shuffling. In International Conference
on Machine Learning, pp. 5213–5225. PMLR, 2021.

Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.
What can we learn privately? SIAM Journal on Computing, 40(3):793–826, 2011.

Chao Li, Gerome Miklau, Michael Hay, Andrew McGregor, and Vibhor Rastogi. The matrix
mechanism: optimizing linear counting queries under differential privacy. The VLDB journal, 24:
757–781, 2015.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=SkhQHMW0W.

H Brendan McMahan, Eider Moore, Daniel Ramage, S Hampson, and BA Arcas. Communication-
efficient learning of deep networks from decentralized data (2016). arXiv preprint
arXiv:1602.05629, 2016.

Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman,
Joseph Gonzalez, and Raman Arora. Fetchsgd: Communication-efficient federated learning with
sketching. In International Conference on Machine Learning, pp. 8253–8265. PMLR, 2020.

Abhin Shah, Wei-Ning Chen, Johannes Balle, Peter Kairouz, and Lucas Theis. Optimal compression
of locally differentially private mechanisms. In International Conference on Artificial Intelligence
and Statistics, pp. 7680–7723. PMLR, 2022.

Ananda Theertha Suresh, Felix X. Yu, Sanjiv Kumar, and H. Brendan McMahan. Distributed mean
estimation with limited communication. In Proceedings of the 34th International Conference on
Machine Learning - Volume 70, ICML’17, pp. 3329–3337. JMLR.org, 2017.

Shay Vargaftik, Ran Ben-Basat, Amit Portnoy, Gal Mendelson, Yaniv Ben-Itzhak, and Michael
Mitzenmacher. Drive: One-bit distributed mean estimation. Advances in Neural Information
Processing Systems, 34:362–377, 2021.

Yu-Xiang Wang, Borja Balle, and Shiva Prasad Kasiviswanathan. Subsampled Rényi differential
privacy and analytical moments accountant. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 1226–1235. PMLR, 2019.

Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for communication-
efficient distributed optimization. In Advances in Neural Information Processing Systems, pp.
1299–1309, 2018.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. In Advances in neural
information processing systems, pp. 1509–1519, 2017.

12

https://openreview.net/forum?id=7ETbK9lQd7
https://openreview.net/forum?id=7ETbK9lQd7
https://openreview.net/forum?id=k1FHgri5y3-
https://openreview.net/forum?id=k1FHgri5y3-
https://openreview.net/forum?id=SkhQHMW0W


Gen
era

ted
by

Cyc
leR

ese
arc

he
r

This paper was generated by CycleResearcher

Yuqing Zhu and Yu-Xiang Wang. Poission subsampled Rényi differential privacy. In International
Conference on Machine Learning, pp. 7634–7642. PMLR, 2019.

13


	Introduction
	Our Contributions
	Related Work

	Preliminaries
	Differential Privacy
	Distributed Mean Estimation
	Private Federated Learning

	Compress-then-Add-Noise Mechanism
	Problem Formulation
	Compress-then-Add-Noise Mechanism
	Privacy Analysis
	Communication Cost and Mean Squared Error

	Private Federated Learning with CAN
	Problem Formulation
	Applying CAN to PFL
	Privacy Analysis
	Communication Cost and Optimization Error

	Experiments
	Distributed Mean Estimation
	Private Federated Learning

	Conclusion

