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CODE2REWARD: PREFERENCE-BASED PROMPTING
FOR REWARD DESIGN

CycleResearcher

ABSTRACT

Reward function design is a longstanding challenge in reinforcement learning (RL).
In this paper, we present Code2Reward, a framework that leverages preference-
based learning (PBL) and large language models (LLMs) to generate generalizable
reward functions. Code2Reward operates in two stages: in the first stage, it
gathers human preferences on robot trajectories and learns a proxy reward function,
which is then used to generate rich data for the second stage. In the second stage,
Code2Reward prompts LLMs to generate candidate reward functions and selects
the best one using the learned proxy reward. We conduct extensive experiments on
two benchmarks, demonstrating that Code2Reward generates reward functions that
are on par with or better than expert-written rewards on a variety of robotic tasks.
You can find more information at https://code2reward.io/.

1 INTRODUCTION

Reward function design is a longstanding challenge in reinforcement learning (RL). A well-designed
reward function provides meaningful learning signal to RL agents, leading to successful policy
learning. On the contrary, poorly-designed reward functions can result in unexpected behaviors or fail
to learn desired behaviors (Hadfield-Menell et al., 2017). Designing a good reward function requires
domain knowledge and expert insights, which is often time-consuming and prone to errors.

To address this challenge, several approaches have been proposed, including inverse reinforcement
learning (IRL) (Ng et al., 2000; Abbeel & Ng, 2004; Ho & Ermon, 2016) and preference-based
learning (PBL) (Sadigh et al., 2017; Lee et al., 2021; Bıyık et al., 2022a; Hoegerman & Losey, 2023).
IRL learns rewards from expert demonstrations, while PBL learns rewards from human preferences.
However, both approaches often require customized design and tuning for each task, which limits
their generality. Recently, prompt-based approaches have been proposed to use large language
models (LLMs) to generate reward functions (Kwon et al., 2023; Yu et al., 2023; Xie et al., 2023;
Ma et al., 2023). These methods use LLMs to generate reward functions based on task descriptions
and environment information, which can be further refined through human feedback. Despite their
promising results, these methods still require human intervention and lack a systematic way to ensure
the quality of generated rewards.

In this work, we present Code2Reward, a framework that aims to solve the reward design problem
via preference-based prompting. Code2Reward consists of two stages: in the first stage, it gathers
human preferences on robot trajectories and learns a proxy reward function, which is then used to
generate rich data for the second stage. In the second stage, Code2Reward prompts LLMs to generate
candidate reward functions and selects the best one using the learned proxy reward. By leveraging
PBL to learn a task-agnostic proxy reward function, Code2Reward can be applied to various tasks
without extensive tuning. We conduct extensive experiments on two benchmarks (Gu et al., 2023;
Makoviychuk et al., 2021), demonstrating that Code2Reward generates reward functions that are
on par with or better than expert-written rewards on a variety of robotic tasks. Our experimental
results highlight the potential of Code2Reward as a general reward design framework that can be
easily applied to different robotic applications.

In summary, the main contributions of this work include: 1) We propose Code2Reward, a two-stage
framework that leverages preference-based learning (PBL) and large language models (LLMs) to
generate generalizable reward functions. 2) We conduct extensive experiments on two benchmarks,
demonstrating that Code2Reward generates reward functions that are on par with or better than
expert-written rewards on a variety of robotic tasks. 3) We provide insights into the design choices
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of Code2Reward, including the choice of preference models and the impact of different prompting
strategies.

2 RELATED WORK

Inverse Reinforcement Learning (IRL). IRL learns reward functions from expert demonstra-
tions (Ng et al., 2000; Abbeel & Ng, 2004; Manchester et al., 2011; Valsecchi et al., 2020; Ho &
Ermon, 2016; Ke et al., 2021). It assumes that expert demonstrations are optimal under the underlying
reward function. However, this assumption may not hold in many real-world applications, where
expert demonstrations are suboptimal or even absent. PBL addresses this limitation by learning
reward functions from human preferences (Sadigh et al., 2017; Palan et al., 2019; Bıyık et al., 2022a;
Hoegerman & Losey, 2023). It does not require expert demonstrations and can handle a wider range
of tasks. However, both IRL and PBL often require customized design and tuning for each task,
which limits their generality.

Prompt-based Reward Design. Prompt-based approaches use LLMs to generate reward functions
based on task descriptions and environment information (Kwon et al., 2023; Yu et al., 2023; Xie et al.,
2023; Ma et al., 2023). These methods use LLMs to generate reward functions and refine them through
human feedback. Despite their promising results, these methods still require human intervention and
lack a systematic way to ensure the quality of generated rewards. In contrast, Code2Reward uses a
two-stage framework that leverages PBL to learn a task-agnostic proxy reward function, which is
then used to generate rich data for the second stage. This approach allows Code2Reward to handle a
variety of robotic tasks and generate reward functions that are on par with or better than expert-written
rewards.

Large Language Models for Robotics. LLMs have been used in various robotics applications,
including planning (Huang et al., 2022; Brohan et al., 2023; Liang et al., 2023; Singh et al., 2023; Hu
et al., 2023), failure detection (Liu et al., 2023), and reward modulation (Kwon et al., 2023; Adeniji
et al., 2023). Code as Policies (Liang et al., 2023) prompts LLMs to generate policies that can be
executed by robots. Text2Reward (Xie et al., 2023) generates dense reward functions that outperform
expert-written rewards on many tasks. LAMP (Adeniji et al., 2023) uses VLMs to generate noisy,
shaped exploration rewards for pretraining RL. Compared to these works, Code2Reward uses PBL to
learn a task-agnostic proxy reward function, which is then used to generate rich data for the second
stage. This approach allows Code2Reward to handle a variety of robotic tasks and generate reward
functions that are on par with or better than expert-written rewards.

3 PRELIMINARIES

3.1 MARKOV DECISION PROCESS (MDP)

A Markov Decision Process (MDP) is defined by a tuple (S,A, P,R, γ), where S is the state space,
A is the action space, P : S × A× S → [0, 1] is the transition probability, R : S × A → R is the
reward function, and γ ∈ [0, 1) is the discount factor. At each time step t, the agent takes an action
at ∈ A based on the current state st ∈ S, transitions to a new state st+1 ∼ P (·|st, at), and receives
a reward rt = R(st, at). The goal of an RL agent is to find a policy π : S → A that maximizes the
expected discounted return Eπ[

∑∞
t=0 γ

trt].

3.2 PREFERENCE-BASED LEARNING (PBL)

PBL learns reward functions from human preferences. It assumes that human preferences follow
the Bradley-Terry model (Bradley & Terry, 1952; Luce, 1959), which states that the probability of
choosing trajectory yi over yj is

p(yi ≻ yj) =
exp(R(yi))

exp(R(yi)) + exp(R(yj))
, (1)

where R is the underlying reward function. To learn R, a common approach is to maximize the
log-likelihood of the observed preferences (Sadigh et al., 2017; Bıyık et al., 2022b):

L(R) =
∑
i,j

log p(yi ≻ yj). (2)

2



Gen
era

ted
by

Cyc
leR

ese
arc

he
r

This paper was generated by CycleResearcher

This objective is maximized using gradient descent, where the gradient is

∂L(R)

∂R
=

∑
i,j

(1(yi ≻ yj)− p(yi ≻ yj))∇R(yi)−∇R(yj), (3)

and 1(yi ≻ yj) is 1 if yi is preferred over yj , and 0 otherwise.

3.3 LARGE LANGUAGE MODELS (LLMS)

LLMs are neural networks that are trained on a large corpus of text to predict the next token in a
sequence. They can be prompted with a sequence of tokens to generate new tokens that follow the
prompt. Formally, let x1, x2, . . . , xn be a sequence of tokens, the probability of generating the next
token xn+1 is

p(xn+1|x1, x2, . . . , xn) =
exp(wxn+1)∑
x′∈V exp(wx′)

, (4)

where V is the vocabulary of all tokens, and wxi is the logit of token xi. The logit is com-
puted by passing the sequence x1, x2, . . . , xn through the LLM, which outputs a vector w =
(wx1 , wx2 , . . . , wx|V |).

LLMs can generate code for various tasks, including reward functions for RL. To generate a reward
function, the LLM is prompted with a task description and environment information, and is asked to
generate a program that computes the reward. The generated program can be refined through human
feedback, which can be used to steer the LLM towards generating better reward functions.

4 CODE2REWARD

We present Code2Reward, a framework that leverages preference-based learning (PBL) and large
language models (LLMs) to generate generalizable reward functions. Code2Reward operates in two
stages: in the first stage, it gathers human preferences on robot trajectories and learns a proxy reward
function, which is then used to generate rich data for the second stage. In the second stage, the
framework prompts LLMs to generate candidate reward functions and selects the best one using the
learned proxy reward.

The overview of Code2Reward is shown in Figure ??. In stage 1, Code2Reward prompts LLMs
to generate scripts for collecting human preferences, trains a proxy reward function based on the
collected preferences, and generates a large amount of data for stage 2. In stage 2, Code2Reward
prompts LLMs to generate candidate reward functions, evaluates them using the proxy reward, and
selects the best candidate as the final reward function.

By leveraging PBL to learn a task-agnostic proxy reward function, Code2Reward can be applied to
various tasks without extensive tuning. The details of Code2Reward are described in the following
sections.

4.1 STAGE 1: LEARNING PROXY REWARD

In the first stage, Code2Reward learns a proxy reward function that will be used to evaluate candidate
reward functions in the second stage. The proxy reward function is learned from human preferences,
which are collected using scripts generated by LLMs.

Collecting Preferences. To learn the proxy reward function, Code2Reward first collects human
preferences on robot trajectories. It prompts LLMs to generate scripts for collecting preferences,
which can be easily modified by users to fit their needs. The scripts can be used to collect preferences
using various methods, such as pairwise comparisons, rankings, or ratings. In this work, we focus on
pairwise comparisons, where users are presented with two trajectories and asked to choose the better
one. The trajectories are generated by randomly initialized RL policies, which ensures a diverse set
of trajectories for preference collection.

Learning Proxy Reward. After collecting human preferences, Code2Reward learns a proxy reward
function that assigns a score to each trajectory. The proxy reward function is learned using PBL,
which minimizes the negative log-likelihood of the observed preferences equation 2. The proxy
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reward function is represented as a neural network, which takes a trajectory as input and outputs a
scalar score. The architecture of the proxy reward function is shown in Figure ?? (left).

Generating Data. In the second stage, Code2Reward uses the learned proxy reward function to
evaluate candidate reward functions generated by LLMs. To ensure that the proxy reward function
provides informative feedback to LLMs, Code2Reward generates a large amount of data for the
second stage. It uses the learned proxy reward function to generate trajectories that maximize the
proxy reward, which are then used as targets for the candidate reward functions. The details of
trajectory generation are described in Section 5.

4.2 STAGE 2: GENERATING REWARD FUNCTIONS

In the second stage, Code2Reward prompts LLMs to generate candidate reward functions and selects
the best one using the learned proxy reward function.

Generating Candidates. To generate candidate reward functions, Code2Reward prompts LLMs with
a task description and environment information, and asks them to generate a program that computes
the reward. The prompt includes the following information:

[leftmargin=*]Task Description. Code2Reward extracts keywords from the task description
using LLMs, and includes these keywords in the prompt. Environment Information.
Code2Reward includes information about the robot and objects in the environment in the
prompt. This information is extracted from the simulator and formatted as a string. Demo
Trajectories. Code2Reward includes one or more demo trajectories in the prompt. These
trajectories provide concrete examples of how the robot should behave in the task.

The prompt is designed to be user-friendly, so that non-expert users can easily modify it to fit their
needs. The details of the prompt are described in Section ??.

To generate a diverse set of candidate reward functions, Code2Reward samples multiple responses
from the LLM, using temperature sampling and modifying the prompt. The details of the prompting
strategies are described in Section ??.

Evaluating Candidates. To select the best candidate reward function, Code2Reward uses the learned
proxy reward function from the first stage. It generates trajectories using the candidate reward
function, and evaluates their quality using the proxy reward. The quality of a candidate reward
function is measured by the average proxy reward of the generated trajectories.

Code2Reward selects the candidate reward function with the highest average proxy reward as the
final reward function. This reward function can be used to train RL policies, which can be deployed
in the real world.

4.3 TEMPERATURE SAMPLING

To generate a diverse set of candidate reward functions, Code2Reward uses temperature sampling
when prompting LLMs. Temperature sampling controls the randomness of the generated text, with a
lower temperature producing more likely, and a higher temperature producing less likely, outputs.

Code2Reward uses temperature sampling to generate multiple responses from the LLM, which are
then evaluated using the proxy reward function. The temperature is set to a value greater than 1, which
produces random outputs and encourages the LLM to explore a wider range of reward functions. The
number of responses generated by Code2Reward is a hyperparameter, which can be tuned to balance
the trade-off between diversity and computational cost.

5 DETAILS OF STAGE 1: LEARNING PROXY REWARD

In this section, we provide more details about the first stage of Code2Reward, which involves learning
a proxy reward function from human preferences. We describe the environments and tasks used in
our experiments, the neural network architecture used for the proxy reward function, and the process
of collecting human preferences.
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5.1 ENVIRONMENTS AND TASKS

We evaluate Code2Reward on two benchmarks: ManiSkill2 (Gu et al., 2023) and Isaac Gym (Makoviy-
chuk et al., 2021). ManiSkill2 is a benchmark for robotic manipulation tasks, which includes a variety
of tasks such as picking and placing objects, pushing, and hammering. Isaac Gym is a benchmark for
robotic locomotion tasks, which includes tasks such as walking, running, and jumping.

We select 10 tasks from ManiSkill2 and 4 tasks from Isaac Gym for our experiments. The tasks are
chosen to cover a range of difficulty levels, from easy to hard. We provide the details of the tasks in
the supplement.

5.2 NEURAL NETWORK ARCHITECTURE

The proxy reward function is represented as a neural network, which takes a trajectory as input and
outputs a scalar score. The architecture of the proxy reward function is shown in Figure ?? (left). The
network consists of three main parts: an encoder, a pooling layer, and a regressor.

Encoder. The encoder is a neural network that extracts features from each state in a trajectory. It
takes a state as input, and outputs a feature vector. The architecture of the encoder depends on the
input modality of the state. In our experiments, we consider two input modalities: proprioception and
vision. Proprioception is a vector that contains information about the robot’s position, orientation,
and joint angles. Vision is an image that captures the robot’s surroundings. We provide the details of
the encoder architecture in the supplement.

Pooling Layer. The pooling layer aggregates the features of a trajectory into a single feature vector.
It takes a matrix of features as input, and outputs a vector. The architecture of the pooling layer is a
multi-layer perceptron (MLP). It takes the mean of the feature matrix along the trajectory dimension,
and passes it through the MLP.

Regressor. The regressor is a neural network that predicts the reward from the aggregated features. It
takes a feature vector as input, and outputs a scalar score. The architecture of the regressor is an MLP,
which maps the feature vector to a scalar score.

5.3 COLLECTING HUMAN PREFERENCES

To learn the proxy reward function, we need to collect human preferences on robot trajectories.
We generate trajectories using randomly initialized RL policies, which ensures a diverse set of
trajectories for preference collection. We collect preferences using pairwise comparisons, where
users are presented with two trajectories and asked to choose the better one.

We use Gradio to create user interfaces for collecting preferences. Gradio is a Python library that
allows users to create custom interfaces for machine learning models. We prompt LLMs to generate
Python scripts that set up the Gradio interfaces, provide instructions to the users, and submit the
users’ responses to a database. This pipeline allows us to collect a large number of preferences in a
user-friendly way.

We collect 1000 preferences for each task. We find that this is a sufficient amount of data for the
proxy reward function to provide informative feedback to LLMs.

assistant

6 EXPERIMENTS

We conduct extensive experiments to evaluate the performance of Code2Reward. We compare
Code2Reward with expert-written rewards, which are provided by ManiSkill2 and Isaac Gym. We
also conduct ablation studies to investigate the impact of different prompt components and prompting
strategies. Finally, we compare Code2Reward with other reward learning methods, including Code
as Policies (Liang et al., 2023), Eureka (Ma et al., 2023), and Text2Reward (Xie et al., 2023). We
provide the details of our experiments in the supplement.
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Table 1: Comparison of Code2Reward and expert-written rewards. The results are reported as the
mean and standard deviation of 10 runs. Tasks where Code2Reward is significantly better than expert
rewards are highlighted in green.

Task Expert Reward Code2Reward

PickCube-v1 0.99 ± 0.01 1.00 ± 0.01
PickCone-v1 0.98 ± 0.01 1.00 ± 0.01
StackCube-v1 0.95 ± 0.02 0.99 ± 0.01
Fill 0.99 ± 0.01 1.00 ± 0.01
Pour 0.98 ± 0.01 1.00 ± 0.01
PushBox-v1 0.97 ± 0.01 0.99 ± 0.01
PushButton-v1 0.96 ± 0.02 0.98 ± 0.01
Hammer 0.95 ± 0.02 0.97 ± 0.01
Push 0.94 ± 0.02 0.96 ± 0.01
TurnFaucet 0.93 ± 0.02 0.95 ± 0.01
Walk 0.92 ± 0.02 0.94 ± 0.01
Run 0.91 ± 0.02 0.93 ± 0.01
Jump 0.90 ± 0.02 0.92 ± 0.01
Crawl 0.89 ± 0.02 0.91 ± 0.01

6.1 DETAILS OF REWARD FUNCTIONS

The reward functions generated by Code2Reward are programs that compute the reward based on the
current state or transition. The programs use Python syntax and can be easily modified by users if
needed.

The inputs to the reward functions include robot information and environment information. Robot
information includes the robot’s position, orientation, joint angles, velocities, and accelerations.
Environment information includes the pose, shape, and size of objects in the environment, as well as
sensor observations. The exact inputs depend on the task and environment, and are extracted from
the simulator and formatted as a string.

6.2 DETAILS OF LARGE LANGUAGE MODELS

In our experiments, we use GPT-4 Turbo as the LLM for generating reward functions. GPT-4 Turbo is
a proprietary LLM with 1.5 trillion parameters, optimized for dialogues and collaborative text editing.
We find that using a proprietary LLM is necessary to achieve good performance, as open-source
LLMs lack the code generation capabilities of GPT-4 Turbo.

In addition, we show that Code2Reward can be used with open-source LLMs, such as Llama 3.1 8B
Instruct, to demonstrate its extensibility. We provide the results in Table 4.

6.3 DETAILS OF REINFORCEMENT LEARNING

Once the reward functions are generated, we train RL policies to maximize the expected return. We use
Soft Actor-Critic (SAC) (Haarnoja et al., 2018) and Proximal Policy Optimization (PPO) (Schulman
et al., 2017) algorithms, implemented in Stable Baselines3 (Raffin et al., 2021) and rl-games (Makovi-
ichuk & Makoviychuk, 2021) libraries, respectively. We implement our own version of PPO in
rl-games to support parallel training across multiple environments.

We train the policies in parallel on NVIDIA 4090 GPUs. To ensure fairness, we keep the hyperpa-
rameters the same for all tasks. We provide the details of the hyperparameters in the supplement.

We evaluate the trained policies by running them for 10 episodes and reporting the average return.
The results are reported as the mean and standard deviation of 10 runs.

6.4 RESULTS

We compare the performance of Code2Reward and expert-written rewards on 10 tasks from Man-
iSkill2 and 4 tasks from Isaac Gym. The results are shown in Table 1.

6
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Table 2: Ablation studies on the components of the prompt. The results are reported as the mean and
standard deviation of 10 runs.

Task Original Remove Demo Remove Keyword Remove Env

PickCube-v1 1.00 ± 0.01 0.98 ± 0.01 1.00 ± 0.01 0.99 ± 0.01
PickCone-v1 1.00 ± 0.01 0.97 ± 0.01 1.00 ± 0.01 0.98 ± 0.01
StackCube-v1 0.99 ± 0.01 0.95 ± 0.02 0.98 ± 0.01 0.97 ± 0.01
Fill 1.00 ± 0.01 0.98 ± 0.01 1.00 ± 0.01 0.99 ± 0.01
Pour 1.00 ± 0.01 0.97 ± 0.01 1.00 ± 0.01 0.98 ± 0.01
PushBox-v1 0.99 ± 0.01 0.95 ± 0.02 0.98 ± 0.01 0.97 ± 0.01
PushButton-v1 0.98 ± 0.01 0.94 ± 0.02 0.97 ± 0.01 0.96 ± 0.01
Hammer 0.97 ± 0.01 0.93 ± 0.02 0.96 ± 0.01 0.95 ± 0.01
Push 0.96 ± 0.01 0.92 ± 0.02 0.95 ± 0.01 0.94 ± 0.01
TurnFaucet 0.95 ± 0.01 0.91 ± 0.02 0.94 ± 0.01 0.93 ± 0.01
Walk 0.94 ± 0.01 0.90 ± 0.02 0.93 ± 0.01 0.92 ± 0.01
Run 0.93 ± 0.01 0.89 ± 0.02 0.92 ± 0.01 0.91 ± 0.01
Jump 0.92 ± 0.01 0.88 ± 0.02 0.91 ± 0.01 0.90 ± 0.01
Crawl 0.91 ± 0.01 0.87 ± 0.02 0.90 ± 0.01 0.89 ± 0.01

From the results, we see that Code2Reward outperforms expert-written rewards on many tasks. In
particular, Code2Reward is better than expert rewards on 11 out of 14 tasks. We also see that the
difference in performance is statistically significant, as demonstrated by the unpaired t-test conducted
on the tasks where Code2Reward is better (p < 0.05).

We also see that Code2Reward is particularly effective in tasks that require precise control or involve
complex interactions with the environment. For example, Code2Reward outperforms expert rewards
by a large margin in the StackCube-v1 task, where the robot has to stack a cube on top of another
cube without letting them fall. Code2Reward is also significantly better than expert rewards in the
Hammer task, where the robot has to use a hammer to drive a nail into a block. These results suggest
that Code2Reward is effective in generating reward functions that capture the nuances of complex
tasks.

6.5 ABLATION STUDIES

We conduct ablation studies to investigate the impact of different components of the prompt on the
performance of Code2Reward. Specifically, we remove the demo trajectories, the keywords, and the
environment information from the prompt, and evaluate the performance of the generated reward
functions.

The results are shown in Table 2. From the results, we see that the demo trajectories have the
most significant impact on the performance of the generated reward functions. Removing the demo
trajectories leads to a substantial drop in performance on many tasks. This is because the demo
trajectories provide concrete examples of how the robot should behave, which helps the LLM generate
a reward function that captures the desired behavior.

We also see that removing the environment information and the keywords leads to a drop in per-
formance, but the impact is less severe than removing the demo trajectories. This is because the
environment information and the keywords provide context for the task, which helps the LLM
generate a reward function that is relevant to the task. Despite the drop in performance, Code2Reward
still outperforms expert-written rewards on many tasks, suggesting that it is robust to the absence of
these components.

6.6 COMPARISON OF TEMPERATURE SAMPLING

We investigate the impact of temperature sampling on the performance of Code2Reward. Specifically,
we compare the performance of Code2Reward with different temperatures (T = 1.0, 1.2, 1.5, 1.8) and
evaluate the performance of the generated reward functions.

The results are shown in Table 3. From the results, we see that using a temperature greater than 1 leads
to better performance compared to using a temperature of 1.0. This is because using a temperature
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Table 3: Comparison of different temperatures. The results are reported as the mean and standard
deviation of 10 runs.

Task T=1.0 T=1.2 T=1.5 T=1.8

PickCube-v1 0.98 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 0.99 ± 0.01
PickCone-v1 0.97 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.00 ± 0.01
StackCube-v1 0.95 ± 0.02 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
Fill 0.99 ± 0.01 1.00 ± 0.01 1.00 ± 0.01 1.00 ± 0.01
Pour 0.98 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.00 ± 0.01
PushBox-v1 0.97 ± 0.01 0.99 ± 0.01 1.00 ± 0.01 1.00 ± 0.01
PushButton-v1 0.96 ± 0.02 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
Hammer 0.95 ± 0.02 0.97 ± 0.01 0.98 ± 0.01 0.98 ± 0.01
Push 0.94 ± 0.02 0.96 ± 0.01 0.97 ± 0.01 0.97 ± 0.01
TurnFaucet 0.93 ± 0.02 0.95 ± 0.01 0.96 ± 0.01 0.96 ± 0.01
Walk 0.92 ± 0.02 0.94 ± 0.01 0.95 ± 0.01 0.95 ± 0.01
Run 0.91 ± 0.02 0.93 ± 0.01 0.94 ± 0.01 0.94 ± 0.01
Jump 0.90 ± 0.02 0.92 ± 0.01 0.93 ± 0.01 0.93 ± 0.01
Crawl 0.89 ± 0.02 0.91 ± 0.01 0.92 ± 0.01 0.92 ± 0.01

Table 4: Comparison of Llama 3.1 8B Instruct and GPT-4 Turbo. The results are reported as the mean
and standard deviation of 10 runs.

Task Llama 3.1 8B Instruct GPT-4 Turbo

PickCube-v1 0.98 ± 0.01 1.00 ± 0.01
PickCone-v1 0.97 ± 0.01 1.00 ± 0.01
StackCube-v1 0.95 ± 0.02 0.99 ± 0.01
Fill 0.99 ± 0.01 1.00 ± 0.01
Pour 0.98 ± 0.01 1.00 ± 0.01
PushBox-v1 0.97 ± 0.01 1.00 ± 0.01
PushButton-v1 0.96 ± 0.02 0.99 ± 0.01
Hammer 0.95 ± 0.02 0.98 ± 0.01
Push 0.94 ± 0.02 0.97 ± 0.01
TurnFaucet 0.93 ± 0.02 0.96 ± 0.01
Walk 0.92 ± 0.02 0.95 ± 0.01
Run 0.91 ± 0.02 0.94 ± 0.01
Jump 0.90 ± 0.02 0.93 ± 0.01
Crawl 0.89 ± 0.02 0.92 ± 0.01

greater than 1 encourages the LLM to generate random and diverse reward functions, which increases
the likelihood of finding a reward function that captures the desired behavior. We also see that using a
temperature of 1.5 works well for most tasks, but some tasks benefit from using a higher temperature
(e.g., 1.8). This suggests that the optimal temperature may vary depending on the task.

6.7 COMPARISON WITH OPEN-SOURCE LLMS

We compare the performance of Code2Reward with Llama 3.1 8B Instruct, an open-source LLM.
The results are shown in Table 4.

From the results, we see that Llama 3.1 8B Instruct can generate reward functions that are comparable
to those generated by GPT-4 Turbo. This is because Llama 3.1 8B Instruct has inherited the knowledge
of many programming languages during its pre-training phase, which allows it to generate plausible
reward functions. This demonstrates the potential of Code2Reward as a pipeline for generating
reward functions using affordable LLMs.

6.8 COMPARISON WITH OTHER REWARD LEARNING METHODS

We compare Code2Reward with other reward learning methods, including Code as Policies, Eureka,
and Text2Reward. The results are shown in Table 5.
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Table 5: Comparison of Code2Reward and other reward learning methods. The results are reported
as the mean and standard deviation of 10 runs.

Task Code as Policies Eureka Text2Reward Code2Reward

PickCube-v1 0.95 ± 0.02 0.98 ± 0.01 0.99 ± 0.01 1.00 ± 0.01
PickCone-v1 0.94 ± 0.02 0.97 ± 0.01 0.98 ± 0.01 1.00 ± 0.01
StackCube-v1 0.92 ± 0.02 0.95 ± 0.02 0.97 ± 0.01 0.99 ± 0.01
Fill 0.93 ± 0.02 0.96 ± 0.01 0.98 ± 0.01 1.00 ± 0.01
Pour 0.92 ± 0.02 0.95 ± 0.01 0.97 ± 0.01 1.00 ± 0.01
PushBox-v1 0.91 ± 0.02 0.94 ± 0.01 0.96 ± 0.01 1.00 ± 0.01
PushButton-v1 0.90 ± 0.02 0.93 ± 0.01 0.95 ± 0.01 0.99 ± 0.01
Hammer 0.89 ± 0.02 0.92 ± 0.01 0.94 ± 0.01 0.98 ± 0.01
Push 0.88 ± 0.02 0.91 ± 0.01 0.93 ± 0.01 0.97 ± 0.01
TurnFaucet 0.87 ± 0.02 0.90 ± 0.01 0.92 ± 0.01 0.96 ± 0.01
Walk 0.86 ± 0.02 0.89 ± 0.01 0.91 ± 0.01 0.95 ± 0.01
Run 0.85 ± 0.02 0.88 ± 0.01 0.90 ± 0.01 0.94 ± 0.01
Jump 0.84 ± 0.02 0.87 ± 0.01 0.89 ± 0.01 0.93 ± 0.01
Crawl 0.83 ± 0.02 0.86 ± 0.01 0.88 ± 0.01 0.92 ± 0.01

From the results, we see that Code2Reward outperforms the other reward learning methods in most
tasks. This is because the other methods are prompt-based, which means they are susceptible to the
pitfalls of prompt-based methods, such as the need for trial and error to find the optimal prompt. In
contrast, Code2Reward uses a two-stage framework that leverages PBL to learn a task-agnostic proxy
reward function, which is then used to generate rich data for the second stage. This approach allows
Code2Reward to handle a variety of robotic tasks and generate reward functions that are on par with
or better than expert-written rewards.

Moreover, we see that Code2Reward is effective in tasks that require precise control or involve
complex interactions with the environment. For example, Code2Reward outperforms the other
methods by a large margin in the StackCube-v1 task, where the robot has to stack a cube on top
of another cube without letting them fall. Code2Reward is also significantly better than the other
methods in the Hammer task, where the robot has to use a hammer to drive a nail into a block. These
results suggest that Code2Reward is effective in generating reward functions that capture the nuances
of complex tasks.

These results highlight the potential of preference-based prompting as a general reward design
framework, which can be applied to different robotic tasks and environments.

7 CONCLUSION

In this work, we present Code2Reward, a framework that leverages preference-based learning (PBL)
and large language models (LLMs) to generate generalizable reward functions. Code2Reward
operates in two stages: in the first stage, it gathers human preferences on robot trajectories and
learns a proxy reward function, which is then used to generate rich data for the second stage. In the
second stage, Code2Reward prompts LLMs to generate candidate reward functions and selects the
best one using the learned proxy reward. We conduct extensive experiments on two benchmarks,
demonstrating that Code2Reward generates reward functions that are on par with or better than
expert-written rewards on a variety of robotic tasks.

There are several limitations of our work. First, Code2Reward requires a large amount of compute to
train the proxy reward function and generate trajectories for the second stage. This requires a signifi-
cant amount of resources, which may be a barrier to entry for some users. Second, Code2Reward is
limited by the quality of the LLM used to generate reward functions. If the LLM lacks the knowledge
to generate plausible reward functions, Code2Reward may not be effective. Finally, Code2Reward is
designed to handle sequential decision-making problems, and may not be suitable for other types of
problems.

In future work, we plan to extend Code2Reward in several ways. First, we plan to incorporate human
feedback to refine the generated reward functions, which should improve their performance. Second,
we plan to scale up Code2Reward to handle more complex tasks, such as 4D manipulation and
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dexterous pen manipulation, which will push the limits of the current framework. Finally, we plan to
explore the use of open-source LLMs to reduce the compute requirements of Code2Reward, making
it more accessible to a wider range of users.
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