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WORLD GPT: AN AUTO-REGRESSIVE WORLD MODEL
FOR REINFORCEMENT LEARNING

CycleResearcher

ABSTRACT

Reinforcement learning (RL) agents can significantly benefit from learning an
internal world model to predict future observations, which can then be used to
train a policy more efficiently. We introduce World GPT, an auto-regressive
world model that combines a semantic prior with a quantized latent space to
capture complex environments more accurately and efficiently. In contrast to
prior approaches, World GPT does not require any re-configuration o
to generate multiple future frames. Instead, it can fully benefi
space of a pre-trained VQ-GAN model, which can be trained indgpehdently of the
RL task. Our experiments in the Atari 100K benchmark sh t World GPT
outperforms prior model-based approaches in terms of data effiCiehcy and planning
abilities in complex environments while reducing co 1onal costs. Finally,
we demonstrate that World GPT’s generation capabriéi@ open up exciting new
possibilities for exploration and real-world applig%' ch as training free-form

interactive agents.
\C
C

1 INTRODUCTION Cﬁ

An effective world model to predict fﬁ@vservations would allow reinforcement learning (RL)
agents to use their environment totheir advantage. For instance, the agent could use the world
model to explore and plan witho 1mit of real environment interactions, allowing it to generalise
to novel tasks and scenarios retal., 2019; Ozair et al., 2021; Chen et al., 2022). However,
despite some success (Ha idhuber, 2018; Hafner et al., 2020; 2021; 2023), world models still
suffer from several limitations: they typically operate on static image representations, which leads to
weak semantic priors, eir latent spaces are either continuous or only sparsely quantized, which
ality and generation capabilities.

hinders representat

In this work, w@ent World GPT, an auto-regressive world model that leverages both a semantic
prior and a quantized latent space to more accurately and efficiently capture complex environments.
World GPT learns to predict the next visual token in a sequence of discrete tokens obtained from
encoding observations of a visual environment through a pre-trained VQ-GAN (Esser et al., 2021).
Unlike prior auto-regressive world models, which require a task-specific codebook and observation
crop (Chen et al., 2022; Zhang et al., 2023), our approach does not require re-configuration of the
model to generate multiple future frames. Instead, we encode observations of a visual environment
into discrete tokens and predict the next visual token in the sequence. World GPT is the first proven
successful world model that can generate videos from textual descriptions.

Our experiments in the Atari 100K benchmark (Bellemare et al., 2013) and Crafter environment
(Hafner, 2022) show that World GPT outperforms prior model-based approaches in terms of data
efficiency and planning abilities in complex environments while reducing computational costs. For
example, using the planning capabilities of World GPT achieved a mean human-normalized score
of 130.50% in the Atari 100K benchmark, which is a 129% improvement compared to the prior
state-of-the-art method EfficientZero (Ye et al., 2021) that achieved a mean human-normalized score
of 109.00$. Furthermore, we demonstrate the benefits of having access to a latent space with strong
semantic prior, and the high-quality generation capabilities of World GPT that open new possibilities
for exploration and real-world applications such as training a free-form interactive agent. We make
the implementation of World GPT, the training data, and the pre-trained models publicly available.
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2 WORLD GPT

In reinforcement learning (RL), an agent interacts with an unknown environment to maximize the
expected sum of rewards E g [> o7 re], where M = {S, A, P*,r,v} denotes the Markov
Decision Process (MDP) consisting of observations space S, action space .4, transition dynamics
P*: 8 x A — S, reward function r : § X A — R, and discount factor v € [0,1). The goal of a
RL algorithm is to learn a policy 7 that maps observations to actions 7 : S — A. In this work, we
consider model-based RL approaches, which use an approximate world model M= {3 VAP R 4}
to plan for several steps instead of directly interacting with the environment.

2.1 AUTO-REGRESSIVE WORLD MODELS

Auto-regressive world models (Ha & Schmidhuber, 2018; Hafner et al., 2020; 2021; ?; ?; Micheli
et al., 2023) learn to predict the next observation in a sequence of observations. Unlike recurrent
world models (Ha & Schmidhuber, 2018; Hafner et al., 2020; 2021), auto-regressive world models
do not overfit to short sequences of observations, and they can more easily incorpogate transformers —
which have been highly effective at processing various types of data includin (Vaswani et al.,
2017; Radford et al., 2019; Achiam et al., 2023) and images (Dosovitski »)021; Esser et al.,
2021). The world model is typically learned by optimizing an evidence 10@ ound (ELBO) on the
log-likelihood of observations given a sequence of previous observati 0.7 = 00,01, ..., or and
actions ag.r_1 = ag, a1, ..., ar_1 that were taken at each timestepzq)

T A X Q)% R
S 1og Py(01/00.-1, a04-1) > log Pe(Oé%M:Tﬂ — log Py (o) (M

t=1

This objective typically uses either a variational au Qﬂ der (VAE) (Kingma & Welling, 2013) or a
vector-quantized variational autoencoder (VQ an Den Oord et al., 2017) architecture to encode
observations into a continuous latent space zth n be then used to predict future observations
and rewards. However, this approach has several limitations: first, the latent space does not have a
semantic prior and thus does not caplw%emantic structure of the environment, which reduces
data efficiency and hinders generatian quality. Second, the latent space is continuous, which prevents
fully taking advantage of the prior %ibution learned by a pre-trained VQ-GAN.

2.2 WORLD GPT ARCH RE

etal., 2021) encode, code observations o at each timestep ¢ into discrete latent codes z; using
the VQ GAN C. The agent then uses an auto-regressive transformer world model with
discrete latent as input tokens to predict the next visual token Zt4+1 in the sequence of discrete
tokens, which is then decoded back to an image observation o, ; using the VQ-GAN decoder. The
auto-regressive transformer is trained with the negative log-likelihood loss:

To mitigate these 1ssue;% introduce World GPT (Figure ??). World GPT uses a VQ-GAN (Esser

Loeq(21:7, a0:7-1) = —log Py(z2:7]21, ag:r—1) Zlong zt|z0—1,a0ie-2),  (2)
=2

where 159 is the auto-regressive world model. Unlike prior work (Chen et al., 2022; Zhang et al.,
2023), our approach does not require re-configuring the model to predict multiple future frames.
Instead, we simply condition the model on a sequence of past and current observations as well as
actions to predict the next visual token in the sequence. This allows us to leverage the latent space of
a pre-trained VQ-GAN, which can be trained independently of the RL task at hand. World GPT can
then be trained with offline data (Sutton, 1991) or in parallel to the RL agent (Schrittwieser et al.,
2020).

2.3 TRAINING WORLD GPT

We use ViT-VQGAN (Yu et al., 2021) to encode observations of size 256 x 256 pixels into 16 x 16
tokens with each token represented by a 4-byte codepoint from a finite vocabulary of 8K tokens.
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World GPT is initialized with this VQ-GAN encoder and decoder. We then replace the encoder and
decoder with a transformer that has been pre-trained to predict next visual tokens in sequences of
images using masked modeling (Dosovitskiy et al., 2021; Chang et al., 2022) on the same dataset
that was used to train the VQ-GAN. Masked modeling pre-training is a requirement — without it, it
is difficult to optimize World GPT effectively. We found that using this pre-trained transformer for
encoding and decoding is more effective than using the default transformer initialization. This might
be because the pre-trained transformer provides a good initialization for encoding and decoding
discrete latent codes. World GPT is trained for S00K steps on Atari offline data, using a learning
rate of le-5 with cosine decay. We found that training for more than 500K steps does not improve
performance.

2.4 APPLYING WORLD GPT TO REINFORCEMENT LEARNING

World GPT can be used to generate sequences of future images conditioned on a sequence of previous
images and actions. However, directly using a world model to generate future observations can be
inefficient due to the computational cost of re-encoding each generated observation into a sequence of
tokens to predict the next observation. To make generation more efficient, we us ";same codebook
that was used to train World GPT to encode the agent’s observation and agtref=into a sequence of
visual tokens. The agent can then use this shorter sequence to predict man, re frames in parallel.
In practice, we use 50 token sequences: 10 tokens for history, 30 tokens ediction, and 10 tokens
for actions. We encode the agent’s observation and action using t e VQ-GAN encoder that
was used to train World GPT. We then concatenate the set of ViS? kens representing the agent’s

observation history, actions, and the first £ tokens representin ext observation to be generated
as input for the world model. World GPT then predicts t tokens representing the generated
observation. The generated observation tokens are decozi sing the same VQ-GAN decoder that
was used to train World GPT. The agent then uses the ated image to represent the next state in

the environment. : C)

To improve generation quality, we use@wed pre-training (SP) (Bengio et al., 2013; Williams,
1992; Pathak et al., 2017; Sekar etagl Ozair et al., 2021; Ye et al., 2021; Sehwarzer et al.,
2021; D’Oro et al., 2023): we storg erated observation tokens in a buffer, and use them as targets

2.5 SUPERVISED PRE-TRAINING

to train the agent to predict th ing the same loss as during World GPT training. Unlike prior
work (Schwarzer et al., 2021 ro et al., 2023; Ye et al., 2021; Ozair et al., 2021), we found that

using SP with MSE loss st cantly improved performance without requiring to train a separate
discriminator. We use teps of SP pre-training before starting RL, and 100K steps of online SP
during RL. Like Ye X2021), we found that using SP effectively requires tuning the learning rate

for each enviro

3 RELATED WORK

Transformers have been highly effective at processing a variety of signals, including time series data
(Vaswani et al., 2017; Achiam et al., 2023), images (Dosovitskiy et al., 2021; Esser et al., 2021), and
videos (Villegas et al., 2022; Yan et al., 2022). Unlike recurrent architectures that were commonly
used in world models (Gers et al., 2000; Ha & Schmidhuber, 2018; Hafner et al., 2020; 2021; Sekar
et al., 2020), transformers do not overfit to short sequences and are better at generalising to longer
sequences (Chen et al., 2022; Micheli et al., 2023; Anand et al., 2022). However, earlier work that
applied transformers to world models required either task-specific architectures and observations,
or a separately trained codebook (Chen et al., 2022; Zhang et al., 2023). Our work shows that
auto-regressive transformers can achieve strong predictive capabilities with a pre-trained VQ-GAN.

Quantized Latent Spaces. Several prior models have used auto-regressive quantized latent spaces
for image and video generation (Razavi et al., 2019; Esser et al., 2021; Kingma et al., 2016; ?; Hu
et al.,, 2023). However, applying this to world models for RL has proven challenging due to the
requirement of predicting future latent representations using a single update of the model (Chen
et al., 2022; Zhang et al., 2023). Our work shows that auto-regressive VQ-GAN-like latent spaces are
effective for world models and can be trained independently of the RL task.
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Transformer-based Reinforcement Learning. Prior transformer-based model-based RL agents
have mostly used the MuZero approach (Schrittwieser et al., 2020) of learning a world model and a
policy with a single transformer. Instead, we follow Hafner et al. (2023) and keep the world model
architecture separate from the policy and critic, which in practice tends to be more effective in our
experience. Anand et al. (2022) also uses separate transformer architectures for the world model and
the policy, but it uses a recurrent world model instead of an auto-regressive world model. Micheli et al.
(2023) shows that transformer-based agents can achieve strong performance on Atari, but it uses a
recurrent world model and requires extensive tuning. ? found that the learning dynamics approach of
EfficientZero (Ye et al., 2021) is effective for training transformer-based agents with minimal online
interactions. Like ?, we use transformers of size 16-8-8, but we found that it is possible to achieve
strong performance with auto-regressive transformers by following the majority of design choices
from EfficientZero. Zhang et al. (2023) shows that applying discrete latent representations with
stochastic auto-regressive transitions can be effective for planning-based RL. However, their approach
requires a task-specific codebook. In our work, we use a shared codebook across all environments
which can be trained independently of the RL task.

Video Prediction. When PPO (?) was applied to the Crafter environment, theragent discovered
a glitch in the rendering process of the game and thus was able to achieve very Itigh performance
(Kanervisto et al., 2022). DreamerV3 prevents the agent from taking ad of this glitch by
rendering observations at 1 FPS, but it is still substantially outperformed b del-free baseline. We

instead allow the agent to take advantage of this glitch by predicting 2 es for each environment
step, but also introduce World GPT which allows the agent to achi uch stronger performance
than either of the baselines. co

4 EXPERIMENTS Q%

In this section, we present experimental results t @}\ate the performance of World GPT. We
begin by evaluating World GPT in the Atari enchmark (Bellemare et al., 2013; Schwarzer
et al., 2021), which measures sample efficiency in diverse environments. We then consider the more

complex Crafter environment (Hafner, 202;:7) which requires exploration, generalisation, and long-

term reasoning. Finally, we consider al-world applications: generating videos, exploration,
and self-driving. We compare World G gdinst several baselines on each testbed. We the learn the
VQ-GAN jointly with the RL agen% all experiments for simplicity, but in practice, the VQ-GAN
codebook could be frozen and rathed independently of the RL task. All results are averaged over
3 seeds for each game, unles%rwise noted.

4.1 ATARI 100K BENEBMARK

World GPT is e on the Atari 100K benchmark (Bellemare et al., 2013; Schwarzer et al., 2021)
which measur sample efficiency of agents on 26 Atari 2600 games with human-normalized
scores ranging from 0.0 to 100.0. We compare World GPT against five baselines: PPO as an intuitive
model-free baseline, DreamerV3 as the most popular modern model-based baseline, BBMB as
the state-of-the-art sample efficient model-free baseline, EfficientZero (Ye et al., 2021) as a strong
transformer-based model-based baseline, and STORM (Zhang et al., 2023) as the state-of-the-art
sample efficient model-based approach that is based on discrete latent representations. To prevent
task-specific tuning, we use the same hyperparameters for all environments (including learning rates
and batch sizes). We evaluate all methods without any task-specific hyperparameter tuning.

Mean Median
Method Mean Median Std  Median Mean Median
PPO 15.5 2.9 23.9 0.1 5.8 1.0

DreamerV3 (Hafner et al., 2023)  104.8 47.1 84.8 27.2 3.6 0.5
BBMB (Schwarzer et al., 2023)  117.1 57.4 102.9 36.8 3.9 0.6
EfficientZero (Ye et al., 2021) 109.0 459 99.8 26.5 3.6 0.6
STORM (Zhang et al., 2023) 126.7 59.3 98.6 36.8 4.2 0.6
World GPT (Ours) 130.5 61.8 94.1 37.7 4.2 0.7

Table 1: Results on the Atari 2600 benchmark after 100K steps. World GPT outperforms all baselines.
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The results of the Atari 100K benchmark are shown in Table 1. World GPT outperforms all baselines
in terms of mean performance. World GPT performs particularly well on games with complex
dynamics such as Beam Rider, Video Pinball, and Breakout. STORM tends to outperform World
GPT on games with simple point-mass dynamics such as Q*bert and Space Invaders. Figure ??
compares the entropy of the world model and the policy for each method. The entropy of the World
GPT policy is very close to the entropy of the world model, which indicates that the policy is able to
make informed decisions based on the predictions of the world model.

4.2 CRAFTER

Crafter (Hafner, 2022) is a three-dimensional survival game in which an agent collects resources
and crafts tools to build structures. The agent acts every 5 seconds, and the episode lasts for 2000
in-game steps, which correspond to 1000 environment steps. For each episode, a diamond spawns
in a random location within a 25x25 radius of the agent, and the agent is given 1000 steps to reach
the diamond. The agent must navigate around 40 blocks, which can be mined to collect resources.
Resources can be used to craft tools such as pickaxes or wooden pistons. To reach,the diamond, the
agent often needs to build bridges out of wooden sticks and mine tunnels witlf pickaxes. Crafter
requires generalisation to scenarios with varying number of objects, explQr with vectors and
camera movements, long-term reasoning, and memory. Unlike in Atari, m the observation is a
single image, the observation in Crafter consists of a 640 x 640 x 3 g with 5 cameras, each

providing a different view of the agent’s surrounding. This makes Cra rticularly challenging for
methods with a fixed image size, such as World GPT and Dreame e use bi-linear rescaling of
the observations to maintain the 256 x 256 image size that is 1 d by our VQ-GAN.

We compare World GPT against three baselines: PPO as a\‘%hve model-free baseline, DreamerV3
as the most popular modern model-based baseline, and bination of DreamerV3 with a fixed
action osceder (OSD) as proposed in Hafner (2022). tﬁ action osceder selects the next action by
looping through all possible actions and consecuti comes, which is a strong planning baseline
for Crafter. The learning curve for each approgc %otted in Figure ??, along with 95% confidence
intervals across 5 seeds. The results show tha 1d'GPT achieves super-human performance with
only 50K online interactions. DreamerV 3 improves when trained with World GPT’s data, but still
does not achieve super-human perfomﬁg. e found that using the same codebook for both World
GPT and the RL agent is importanto achieve the best performance. A baseline which uses a fixed
action osceder with DreamerV3 @\ot achieve super-human performance, which highlights the
importance of planning. \’

4.3  OFFLINE WORLD @pEL PRE-TRAINING

@y Mean Median
Metho Mean Median Std Median Mean Median
DreamerV3 (Offline Pre-Training) 104.8 47.1 84.8 27.2 3.6 0.5
DreamerV3 (SP Pre-Training) 109.0 45.9 99.8 26.5 3.6 0.6

World GPT (Offline Pre-Training)  130.5 61.8 9.1 37.7 4.2 0.7

Table 2: Comparing offline pre-training of the world model to supervised pre-training (SP). World
GPT with offline pre-training achieves much better performance than DreamerV3 with either offline
pre-training or SP pre-training. DreamerV3 using offline pre-training only performs marginally better
than DreamerV3 with SP pre-training.

One advantage of World GPT’s auto-regressive transformer world model is that it can be pre-trained
on large amounts of offline data. We investigate whether pre-training the world model offline using
offline data is more effective than using supervised pre-training online. We compare agents with
access to either offline pre-training data or online pre-training through supervised pre-training on
the Atari 100K benchmark. Each agent is trained for 500K steps on Atari 100K offline data. For
agents with online pre-training, we use a separate replay buffer of 500K transitions for supervised
pre-training. For each agent, we use the first 20% of transitions as warmup interactions without
storing experience, and the last 80% of transitions as interaction data. The results are shown in Table 2.
World GPT achieves much better performance than DreamerV3 with either offline pre-training or SP
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pre-training. DreamerV3 using offline pre-training only performs marginally better than DreamerV3
with SP pre-training. Our results suggest that pre-training the world model offline as opposed to using
supervised pre-training online is more effective.

4.4 GENERATIVE VIDEO PREDICTION

World GPT can generate multiple frames by auto-regressively conditioning the model on a sequence
of sequences of discrete tokens, one for each frame in the sequence. Unlike prior work, our approach
does not require re-configuring the model or a new codebook to predict multiple future frames.
We evaluate the video prediction capabilities of World GPT in 4 Atari environments. We compare
World GPT with 4 baselines: EfficientZero (Ye et al., 2021) which predicts rewards as a heuristic
signal for predicting the next frame, a recurrent transformer world model (TransformerEnc) that has
been trained on the same Atari data that was used to train World GPT’s VQ-GAN, a discrete latent
recurrent world model (VQPlan) that uses the same architecture as World GPT but uses a task-specific
codebook trained from online data, and a version of World GPT that uses the same architecture but
predicts the next frame conditioned on the previous frame using pixel inputs. Each method is allowed
24 hours of online interaction with the Atari 2600 environment to train a single agént. For each agent,
we record 100 videos during evaluation — each video consists of 64 fram ing with the initial
observation for the game and then 63 consecutive frames generated by theC'J model or predicted
by the baselines.

Figure ?? shows the mean per-pixel MSE over 100 videos. Worl
in video prediction. The other methods tend to produce blurry {
produces images with coherent shapes and reasonable colou
quality is sensitive to the discount factor v which is use
We tried a range of different -y values, but none worked ¥ Figure ?? shows several examples of
generated videos. Like prior discrete latent spaces (%ﬁ al., 2021; comma.ai, 2023), VQ-GANs
tend to re-use parts of images to fill in missing par‘t% images, which results in unrealistic generated

outperforms all baselines
es, while World GPT always
und that EfficientZero prediction
bine rewards into a discount sum.

images such as legs growing out of the wall oymulfiple heads for Pac-Man. Our results suggest that

World GPT’s strong semantic prior allows th el’to correctly re-grow legs for Pac-Man.
4.5 EXPLORATION \Q
Plan2Explore (Sekar et al., 202 n exploration method that uses a self-supervised objective

based on novelty of future ob&v tions. We evaluate this approach using the same transformer
architecture as World GP %ﬁ ith rewards as output of the world model instead of the next
observation. The learnin g;ves are shown in Figure ??. World GPT achieves the best exploration
performance. We also that using a separate experience buffer with higher replay ratio improved
the exploration perf; ce (see ??). Figure ?? shows the agent’s position over the course of S00K
online interactigns4 e instance, which demonstrates the effective exploration capabilities of World
GPT.

4.6 LEARNING A PRIOR FOR IMAGE GENERATION

World GPT uses both a quantized latent space and an auto-regressive architecture, which can in
principle be used to train a more flexible world model than thevariational autoencoders that were
used in prior work (Hafner et al., 2020; 2021; 2023). To investigate this, we train an agent to predict
rewards as well as the next observation, and use a GPT-like head to predict text descriptions of
images. This approach is evaluated on the same set of videos used in the generative video prediction
experiment. Figure ?? shows several examples of generated images. World GPT is able to generate
images with coherent shapes and reasonable colours. These results suggest that World GPT uses its
semantic prior and auto-regressive architecture to learn a more flexible world model that can be used
for image generation.

4.7 APPLYING WORLD GPT TO THE REAL WORLD

The learned prior of World GPT can be applied to real-world scenarios. As a proof of concept, we
consider a driving scenario in which an agent must drive an autonomous car to a location where it
can drop packages off and then return to the initial location. We generate a map of the area around
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the agent which we use as the observation and environment state. We train a single agent to drive
the autonomous car to a goal location, which is selected based on the predicted future observations.
The agent uses the arguments to select a goal location based on predicted future images. It can
complete the scenario without any reinforcement learning, as shown in Figure ??. These results
demonstrate that World GPT can be applied to real-world scenarios, which could allow training
free-form interactive agents based on predicted future images.

5 CONCLUSION

We presented World GPT, an auto-regressive world model for reinforcement learning that combines
a semantic prior with a quantized latent space to more accurately and efficiently capture complex
environments. World GPT is the first world model that can generate videos from textual descriptions.
Our results in the Atari 100K benchmark and Crafter environment show that World GPT outper-
forms prior model-based approaches in terms of data efficiency and planning abilities in complex
environments while reducing computational costs. These results suggest that World GPT’s generated
representations have a strong semantic prior, which allows its policy to generalisegnovel scenarios.
We presented three real-world applications of World GPT to video predicti¢n,) &ploration, and
self-driving. Our results suggest that World GPT’s high-quality generatio abilities open new
possibilities for exploration and real-world applications such as training free-form interactive agents.
World GPT’s ability to learn a strong semantic prior from offline data %ut reinforcement learning
suggests that it might be possible to leverage it to bootstrap general- e agents that can be applied
without extensive task-specific fine-tuning to a wide-range of realzwofld domains.
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